Abstract

The surface plasmon (SP) resonance excited at subwavelength cylindrical hole arrays milled in metal films is systematically studied by solving the three-dimensional Maxwell’s equations using the finite element method. The absorption spectrum of the hole arrays, combined with the electric-field distribution, is employed to investigate the plasmon resonance of the patterned metal film. It is found that (i) an SP resonance correlates to a resonant peak in the absorption spectrum, but not all the peaks in the spectrum correlates to the plasmon resonances; (ii) the size variation of the hole array will shift the resonant wavelength, i.e., an increment of 100 nm in the pitch p, the hole diameter d, and the hole depth t leads to a redshift of 60–70, 30–40, or 10–20 nm in the resonant wavelength, respectively; (iii) the maximum enhancement of the electric field on the surface of the metal film corresponds to the highest absorption peak, which can be achieved by designing the p, d, and t of the hole array; and (iv) for small holes (e.g., d=125nm) or shallow holes (e.g., t=100nm), the absorption characteristics of the hole arrays are particularly important as some resonant peaks are missing in their transmission spectra. Our finding is of particular importance in applications such as SP resonance based sensing.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced optical transmission at the cutoff transition

E. Laux, C. Genet, and T. W. Ebbesen
Opt. Express 17(9) 6920-6930 (2009)

Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array

Yuanyuan Li, Jian Pan, Peng Zhan, Shining Zhu, Naiben Ming, Zhenlin Wang, Wenda Han, Xunya Jiang, and Jian Zi
Opt. Express 18(4) 3546-3555 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription