Abstract

The surface plasmon (SP) resonance excited at subwavelength cylindrical hole arrays milled in metal films is systematically studied by solving the three-dimensional Maxwell’s equations using the finite element method. The absorption spectrum of the hole arrays, combined with the electric-field distribution, is employed to investigate the plasmon resonance of the patterned metal film. It is found that (i) an SP resonance correlates to a resonant peak in the absorption spectrum, but not all the peaks in the spectrum correlates to the plasmon resonances; (ii) the size variation of the hole array will shift the resonant wavelength, i.e., an increment of 100 nm in the pitch p, the hole diameter d, and the hole depth t leads to a redshift of 60–70, 30–40, or 10–20 nm in the resonant wavelength, respectively; (iii) the maximum enhancement of the electric field on the surface of the metal film corresponds to the highest absorption peak, which can be achieved by designing the p, d, and t of the hole array; and (iv) for small holes (e.g., d=125nm) or shallow holes (e.g., t=100nm), the absorption characteristics of the hole arrays are particularly important as some resonant peaks are missing in their transmission spectra. Our finding is of particular importance in applications such as SP resonance based sensing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef]
  4. Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
    [CrossRef]
  5. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
    [CrossRef]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
    [CrossRef]
  7. P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17, 24349–24357 (2009).
    [CrossRef]
  8. F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
    [CrossRef]
  9. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [CrossRef]
  10. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
    [CrossRef]
  11. J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  12. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
    [CrossRef]
  13. A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
    [CrossRef]
  14. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
    [CrossRef]
  15. S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010).
    [CrossRef]
  16. F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004).
    [CrossRef]
  17. Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
    [CrossRef]
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  19. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  20. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
    [CrossRef]
  21. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef]
  22. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
    [CrossRef]
  23. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
    [CrossRef]
  24. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7, S90–S96 (2005).
    [CrossRef]
  25. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef]
  26. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  27. http://www.comsol.com/ .
  28. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  29. M. Bass and E. W. Van Stryland, eds., Handbook of Optics, Vol. 2, 2nd ed. (McGraw-Hill, 1994).
  30. Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
    [CrossRef]
  31. D. Sarid, “Long range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  32. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
    [CrossRef]
  33. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef]
  34. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
    [CrossRef]
  35. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
    [CrossRef]

2011 (1)

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
[CrossRef]

2010 (7)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[CrossRef]

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010).
[CrossRef]

2009 (4)

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
[CrossRef]

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[CrossRef]

P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17, 24349–24357 (2009).
[CrossRef]

2008 (4)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

2007 (2)

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

2005 (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7, S90–S96 (2005).
[CrossRef]

2004 (4)

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
[CrossRef]

F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004).
[CrossRef]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

2002 (1)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

2001 (1)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

1981 (1)

D. Sarid, “Long range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Aizpurua, J.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[CrossRef]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Altug, H.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

Ang, K. W.

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Artar, A.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Bai, P.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Brolo, A. G.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Brunsen, A.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
[CrossRef]

Chang, T. Y.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Chu, H. S.

de Abajo, F. J. G.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7, S90–S96 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Ding, Y.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
[CrossRef]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Dostalek, J.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
[CrossRef]

Duan, X.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Duyne, R. P. V.

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7, S90–S96 (2005).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Eftekhari, F.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Escobedo, C.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Fang, Q.

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

Ferreira, J.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Girotto, E. M.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Gordon, R.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gu, M. X.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
[CrossRef]

Hillenbrand, R.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

Huang, M.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

Javed, M. H.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
[CrossRef]

Jonas, U.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
[CrossRef]

Kall, M.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
[CrossRef]

Knoll, W.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
[CrossRef]

F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Koh, W. S.

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[CrossRef]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Kwong, D. L.

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, E. P.

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[CrossRef]

S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[CrossRef]

P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17, 24349–24357 (2009).
[CrossRef]

Lo, G. Q.

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

Lofas, S.

F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004).
[CrossRef]

Lyanders, O.

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Magnusson, R.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
[CrossRef]

Ostrikov, K.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[CrossRef]

Pakizeh, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Park, G.-H.

S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Persson, B.

F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Prikulis, J.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Ren, F. F.

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Sarid, D.

D. Sarid, “Long range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Sepulveda, B.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Shan, N. C.

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Sinton, D.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Song, J. F.

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

Song, S. H.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
[CrossRef]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
[CrossRef]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

Wang, Y.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
[CrossRef]

Wei, X. C.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wu, L.

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Yanik, A. A.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

Yoon, J.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
[CrossRef]

Yu, F.

F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004).
[CrossRef]

Yu, M. B.

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zhou, W.

S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010).
[CrossRef]

Zhu, S. L.

S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

Anal. Chem. (3)

F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765–6770 (2004).
[CrossRef]

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632(2009).
[CrossRef]

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81, 4308–4311 (2009).
[CrossRef]

Analyst (1)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133, 1308–1346 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

F. F. Ren, K. W. Ang, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 97, 091102 (2010).
[CrossRef]

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[CrossRef]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef]

IEEE Photon. J. (1)

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Photon. J. 3, 365–374 (2011).
[CrossRef]

J. Opt. A (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7, S90–S96 (2005).
[CrossRef]

J. Phys. Chem. C (1)

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207–1212 (2007).
[CrossRef]

Nano Lett. (1)

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4, 1003–1007 (2004).
[CrossRef]

Nanotechnology (1)

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[CrossRef]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Nat. Photon. (1)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (2)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. Sarid, “Long range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Plasmonics (2)

S. L. Zhu, W. Zhou, G.-H. Park, and E. P. Li, “Numerical design methods of nanostructure array for nanobiosensing,” Plasmonics 5, 267–271 (2010).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107–113 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Other (5)

http://www.comsol.com/ .

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

M. Bass and E. W. Van Stryland, eds., Handbook of Optics, Vol. 2, 2nd ed. (McGraw-Hill, 1994).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Unit cell for simulating light propagating through a two-dimensional cylindrical hole array (repeating in the x and y directions) in a suspended Ag film in air, i.e., air–silver–air, where p, d and t are the pitch of the array, the diameter of the hole, and the thickness of the Ag film, respectively. (b) Quarter of the unit cell, where S0 is the surface to set up the incident light wave and the surfaces S1 and S2 are used to calculate the reflected and the transmitted power, respectively. For simplicity, a linearly polarized plane wave traveling in the z direction with the electric field polarized in the x direction is assumed.

Fig. 2.
Fig. 2.

(a) Simulated spectra of absorptance A, reflectance R, and transmittance T and their sum (solid lines) for a cylindrical hole array (p=500nm, d=250nm) fabricated in a 400 nm thick freestanding Ag film. For comparison, an experimentally measured [24] transmission spectrum T for the same hole array is shown in symbols. (b) Simulated absorptance spectrum A for a 400 nm thick freestanding Ag film with (solid line) or without (dashed line) the cylindrical hole array. Simulated (dashed line) and measured (symbols) [29] reflectance spectrum R for a freestanding Ag film.

Fig. 3.
Fig. 3.

Electric-field distribution (V/m) from the bottom view (xy plane [nm], z=0), the cross-section view (zx plane [nm], y=0), and the top view (xy plane [nm], z=t), at three wavelengths: (a) 420, (b) 504, and (c) 582 nm, which correspond to the absorption peaks 1, 2, and 3 shown in Fig. 2(b).

Fig. 4.
Fig. 4.

Electric-field enhancement γ (a) along the z direction at the edge of the hole (x=d/2=125nm and y=0) and (b) along the x direction at the front surface (z=t=400nm and y=0), at three wavelengths: 420, 504, and 582 nm, which correspond to the absorption peaks 1, 2, and 3 shown in Fig. 2(b). In (a), z=0 is the back surface where the light wave exits, and z=t=400nm is the front surface where the light wave enters. In (b), x=0 is the center of the hole, x=d/2 is the edge of the hole, and x=p/2 is the center of the silver island.

Fig. 5.
Fig. 5.

Calculated spectra of (a) transmission and (b) absorption at normal incidence for the arrays of cylindrical holes (d=250nm, t=400nm) for a range of pitches p=400600nm.

Fig. 6.
Fig. 6.

(a) Resonant wavelength λp as a function of the pitch p for fixed hole diameter d=250nm and hole depth t=400nm. (b) Electric-field enhancement γ at the front surface (z=t=400nm and y=0) along the x direction for three different pitches: p=400nm (λp=518nm), 500 nm (λp=582nm), and 600 nm (λp=654nm), where the x coordinate is referenced to the midpoint between two neighboring holes.

Fig. 7.
Fig. 7.

Calculated spectra of (a) transmission and (b) absorption at normal incidence for the arrays of cylindrical holes (p=500nm, t=400nm) for a range of hole diameters d=125350nm.

Fig. 8.
Fig. 8.

(a) Resonant wavelength λp as a function of the hole diameter d for fixed pitch p=500nm and hole depth t=400nm. (b) Electric-field enhancement γ at the front surface (z=t=400nm and y=0) along the x direction for six different hole diameters at their own resonant wavelength λp, where the x coordinate is referenced to the center of the hole.

Fig. 9.
Fig. 9.

Calculated spectra of (a) transmission and (b) absorption at normal incidence for the arrays of cylindrical holes (p=500nm, d=250nm) for a range of hole depths t=100700nm.

Fig. 10.
Fig. 10.

(a) Peak position λp as a function of the silver film thickness t for fixed pitch p=500nm and diameter d=250nm. (b) Electric-field enhancement γ at the edge of the hole (x=d/2=125nm and y=0) along the z direction for three different thicknesses: t=100nm (λp=534nm), 400 nm (λp=582nm), and 600 nm (λp=592nm), where the z coordinate is normalized to t.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λp=λp0+0.65(pp0)+0.35(dd0)+0.15(tt0),

Metrics