Abstract

We report in detail, both experimentally and using numerical simulation, the efficiency of generation of supercontinua in optical fiber driven by modulation instability of a continuous-wave (CW) pump source. It is shown that the degree of pump coherence has a dramatic effect on the resulting spectral expansion and it is discussed how this can be explained by having the proper conditions for efficient modulation instability to break the CW pump light into a train of fundamental solitons that subsequently undergo self-Raman shift to longer wavelengths. It is proposed that an optimal pump bandwidth exists corresponding to the optimal degree of pump incoherence, defined as a function of the modulation instability period.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
    [CrossRef]
  2. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
    [CrossRef]
  3. M. González-Herráez, S. Martin-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
    [CrossRef]
  4. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706–2708 (2004).
    [CrossRef]
  5. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended CW supercontinuum generation in a low water-loss holey fiber,” Opt. Lett. 30, 3132–3134 (2005).
    [CrossRef]
  6. A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008).
    [CrossRef]
  7. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
    [CrossRef]
  8. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
    [CrossRef]
  9. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407 (2008).
    [CrossRef]
  10. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol. 27, 1556–1564 (2009).
    [CrossRef]
  11. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009).
    [CrossRef]
  12. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18, 24729–24734 (2010).
    [CrossRef]
  13. J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 8.
  14. A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980).
    [CrossRef]
  15. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989).
    [CrossRef]
  16. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Femtosecond soliton Raman generation,” IEEE J. Quantum Electron. 24, 332–340 (1988).
    [CrossRef]
  17. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
    [CrossRef]
  18. S. K. Turitsyn, “Theory of energy evolution in laser resonators with saturated gain and non-saturated loss,” Opt. Express 17, 11898–11904 (2009).
    [CrossRef]
  19. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011).
    [CrossRef]
  20. S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, L. Abrardi, M. L. Hernanz, and M. Gonzalez-Herraez, “Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation,” Opt. Lett. 31, 3477–3479 (2006).
    [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  22. J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  24. E. M. Dianov, A. Grudinin, A. Prokhorov, and V. Serkin, “Non-linear transformation of laser radiation and generation of the Raman solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge University, 1992), Chap. 7.
  25. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [CrossRef]
  26. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzlez-Herrez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
    [CrossRef]
  27. J. N. Kutz, C. Lynga, and B. J. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13, 3989–3998 (2005).
    [CrossRef]
  28. M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
    [CrossRef]
  29. A. Sauter, S. Pitois, G. Millot, and A. Picozzi, “Incoherent modulation instability in instantaneous nonlinear Kerr media,” Opt. Lett. 30, 2143–2145 (2005).
    [CrossRef]
  30. J. C. Travers, “Optimizing pump partial coherence for efficient modulation instability and supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuX3.
  31. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  32. S. Kobtsev and S. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13, 6912–6918 (2005).
    [CrossRef]
  33. J. C. Travers, S. V. Popov, and J. R. Taylor, “A new model for CW supercontinuum generation,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.
  34. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [CrossRef]
  35. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  36. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
    [CrossRef]
  37. I. A. Walmsley and V. Wong, “Characterization of the electric field of ultrashort optical pulses,” J. Opt. Soc. Am. B 13, 2453–2463 (1996).
    [CrossRef]
  38. J. C. Travers, M. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 3.
  39. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  40. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [CrossRef]
  41. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  42. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [CrossRef]
  43. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987).
    [CrossRef]
  44. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
    [CrossRef]
  45. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
    [CrossRef]

2011 (1)

2010 (2)

2009 (4)

2008 (4)

2007 (1)

2006 (3)

2005 (6)

2004 (1)

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706–2708 (2004).
[CrossRef]

2003 (3)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

M. González-Herráez, S. Martin-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
[CrossRef]

2002 (2)

2000 (1)

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
[CrossRef]

1996 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[CrossRef]

1993 (1)

1989 (2)

M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989).
[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

1988 (1)

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Femtosecond soliton Raman generation,” IEEE J. Quantum Electron. 24, 332–340 (1988).
[CrossRef]

1987 (1)

1980 (1)

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980).
[CrossRef]

Abeeluck, A. K.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Abrardi, L.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[CrossRef]

Avdokhin, A. V.

Babin, S. A.

Bang, O.

Bar-Joseph, I.

Bednyakova, A. E.

Bigot, L.

Bjarklev, A.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Bouwmans, G.

Brinkman, W. F.

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980).
[CrossRef]

Cantrell, C. D.

Carrasco-Sanz, A.

Chapman, B. H.

Chemla, D. S.

Chen, H. H.

Christodoulides, D. N.

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
[CrossRef]

Churkin, D. V.

Coen, S.

Corredera, P.

Coskun, T.

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
[CrossRef]

Cumberland, B. A.

de Matos, C. J. S.

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706–2708 (2004).
[CrossRef]

Dianov, E. M.

E. M. Dianov, A. Grudinin, A. Prokhorov, and V. Serkin, “Non-linear transformation of laser radiation and generation of the Raman solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge University, 1992), Chap. 7.

Douay, M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[CrossRef]

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

J. C. Travers, M. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 3.

Eggleton, B. J.

Fedoruk, M. P.

Ferin, A. A.

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008).
[CrossRef]

Fotiadi, A. A.

Frosz, M.

J. C. Travers, M. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 3.

Frosz, M. H.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gomes, A. S. L.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Femtosecond soliton Raman generation,” IEEE J. Quantum Electron. 24, 332–340 (1988).
[CrossRef]

Gonzalez-Herraez, M.

González-Herráez, M.

M. González-Herráez, S. Martin-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[CrossRef]

Gonzlez-Herrez, M.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

Gordon, J. P.

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Femtosecond soliton Raman generation,” IEEE J. Quantum Electron. 24, 332–340 (1988).
[CrossRef]

Grudinin, A.

E. M. Dianov, A. Grudinin, A. Prokhorov, and V. Serkin, “Non-linear transformation of laser radiation and generation of the Raman solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge University, 1992), Chap. 7.

Hasegawa, A.

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980).
[CrossRef]

Headley, C.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Hernanz, M. L.

Hollenbeck, D.

Horche, P. R.

M. González-Herráez, S. Martin-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[CrossRef]

Islam, M. N.

Ismagulov, A. E.

Jorgensen, C. G.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Kablukov, S. I.

Kane, D. J.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[CrossRef]

Kobtsev, S.

Kudlinski, A.

Kurkov, A. S.

Kutz, J. N.

Latkin, A. I.

Le Rouge, A.

Lee, Y. C.

Lynga, C.

Martin-Lopez, S.

Mélin, G.

Menyuk, C. R.

Millot, G.

Mussot, A.

Nicholson, J. W.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Picozzi, A.

Pitois, S.

Podivilov, E. V.

Popov, S. V.

B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18, 24729–24734 (2010).
[CrossRef]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
[CrossRef]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
[CrossRef]

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended CW supercontinuum generation in a low water-loss holey fiber,” Opt. Lett. 30, 3132–3134 (2005).
[CrossRef]

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706–2708 (2004).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “A new model for CW supercontinuum generation,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.

Prokhorov, A.

E. M. Dianov, A. Grudinin, A. Prokhorov, and V. Serkin, “Non-linear transformation of laser radiation and generation of the Raman solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge University, 1992), Chap. 7.

Quiquempois, Y.

Rulkov, A. B.

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
[CrossRef]

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008).
[CrossRef]

Sauter, A.

Segev, M.

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
[CrossRef]

Serkin, V.

E. M. Dianov, A. Grudinin, A. Prokhorov, and V. Serkin, “Non-linear transformation of laser radiation and generation of the Raman solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge University, 1992), Chap. 7.

Sholokhov, E.

Skryabin, D. V.

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

Smirnov, S.

Soljacic, M.

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
[CrossRef]

Sucha, G.

Taki, M.

Taylor, J. R.

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
[CrossRef]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
[CrossRef]

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended CW supercontinuum generation in a low water-loss holey fiber,” Opt. Lett. 30, 3132–3134 (2005).
[CrossRef]

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706–2708 (2004).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Femtosecond soliton Raman generation,” IEEE J. Quantum Electron. 24, 332–340 (1988).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “A new model for CW supercontinuum generation,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Travers, J. C.

B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18, 24729–24734 (2010).
[CrossRef]

J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
[CrossRef]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
[CrossRef]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
[CrossRef]

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended CW supercontinuum generation in a low water-loss holey fiber,” Opt. Lett. 30, 3132–3134 (2005).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “A new model for CW supercontinuum generation,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.

J. C. Travers, M. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 3.

J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 8.

J. C. Travers, “Optimizing pump partial coherence for efficient modulation instability and supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuX3.

Trebino, R.

Turitsyn, S. K.

Vanholsbeeck, F.

Vanvincq, O.

Vishwanath, A.

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
[CrossRef]

Wai, P. K. A.

Walmsley, I. A.

Wegener, M.

Wong, V.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Yan, M. F.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Yulin, A. V.

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

Appl. Phys. B (1)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706–2708 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Femtosecond soliton Raman generation,” IEEE J. Quantum Electron. 24, 332–340 (1988).
[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Opt. Commun. (2)

A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008).
[CrossRef]

M. González-Herráez, S. Martin-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003).
[CrossRef]

Opt. Express (11)

J. N. Kutz, C. Lynga, and B. J. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13, 3989–3998 (2005).
[CrossRef]

F. Vanholsbeeck, S. Martin-Lopez, M. Gonzlez-Herrez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
[CrossRef]

S. Kobtsev and S. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13, 6912–6918 (2005).
[CrossRef]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[CrossRef]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
[CrossRef]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
[CrossRef]

S. K. Turitsyn, “Theory of energy evolution in laser resonators with saturated gain and non-saturated loss,” Opt. Express 17, 11898–11904 (2009).
[CrossRef]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef]

B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18, 24729–24734 (2010).
[CrossRef]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011).
[CrossRef]

J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
[CrossRef]

Opt. Lett. (8)

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009).
[CrossRef]

A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407 (2008).
[CrossRef]

S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, L. Abrardi, M. L. Hernanz, and M. Gonzalez-Herraez, “Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation,” Opt. Lett. 31, 3477–3479 (2006).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended CW supercontinuum generation in a low water-loss holey fiber,” Opt. Lett. 30, 3132–3134 (2005).
[CrossRef]

A. Sauter, S. Pitois, G. Millot, and A. Picozzi, “Incoherent modulation instability in instantaneous nonlinear Kerr media,” Opt. Lett. 30, 2143–2145 (2005).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
[CrossRef]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[CrossRef]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987).
[CrossRef]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995).
[CrossRef]

Phys. Rev. E (1)

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (9)

J. C. Travers, M. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 3.

J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 8.

J. C. Travers, “Optimizing pump partial coherence for efficient modulation instability and supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuX3.

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

J. C. Travers, S. V. Popov, and J. R. Taylor, “A new model for CW supercontinuum generation,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

E. M. Dianov, A. Grudinin, A. Prokhorov, and V. Serkin, “Non-linear transformation of laser radiation and generation of the Raman solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge University, 1992), Chap. 7.

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Numerically modeled (a), (c), and (e) temporal and (b), (d), and (f) spectral intensity profiles of the input pump source for three pump bandwidths: (a) and (b) 0.13 nm; (c) and (d) 1.34 nm; (e) and (f) 4.02 nm. The time-averaged power is shown in (a), (c), and (e) with a dashed red line, and is constant to within 1% of a target value of 6.3 W.

Fig. 2.
Fig. 2.

Relative peak power enhancement factor (where Ψenhancement=Ppeak/Paverage) as a function of the FWHM pump source bandwidth.

Fig. 3.
Fig. 3.

(a) Components of the tunable ASE source. ASE seed: DF, Er-doped fiber amplifier; BPF, bandpass filter (Δλ=12nm); Er-doped fiber preamplifier. TBPF, tunable bandpass filter (0.1<Δλ<15nm). Power amp, 10 W Er-doped fiber amplifier. (b) Experimental setup. ISO, high-power fiberized optical isolator; HNLF, highly-nonlinear fiber. The cross denotes a permanent welded fusion splice between the output of the isolator and the HNLF for a fully fiber integrated format.

Fig. 4.
Fig. 4.

Optical spectra and corresponding measured background-free (noncollinear) intensity AC trace for three increasing pump source bandwidths: (a) and (d) 0.36 nm; (b) and (e) 1.77 nm; (c) and (f) 5.28 nm.

Fig. 5.
Fig. 5.

(a) Calculated dispersion curve (solid curve) and corresponding nonlinearity curve (dashed curve). The vertical dotted line corresponds to the experimental pump wavelength of 1.565 μm. (b) MI period (solid curve), and estimated energy of solitons emitted from MI (dashed curve) as a function of pump power for the given fiber parameters at the pump wavelength of 1.565 μm. The vertical dotted line denotes the average power of the CW laser source used in our experiments. Inset shows the estimated duration of the solitons emitted from MI.

Fig. 6.
Fig. 6.

The 3dB (or FWHM) pump source bandwidth as a function of the tunable bandpass filter bandwidth.

Fig. 7.
Fig. 7.

Intensity AC traces of the input source for three pump bandwidths: (a) and (b) 0.36 nm; (c) and (d) 1.77 nm; (e) and (f) 5.28 nm. (a), (c), and (e) Experimental; (b), (d), and (f) numerical.

Fig. 8.
Fig. 8.

Dependence of generated continuum width (10 dB) on the CW pump bandwidth (3 dB) for propagation of 6.4 W average power through 8 m of HNLF. (a) Experimental results; (b) numerical comparison.

Fig. 9.
Fig. 9.

Temporal input field intensities for three pump bandwidths, computed using the CW laser model: (a) 0.33, (c) 2.58, and (e) 6.24 nm. The horizontal bar shows the modulation instability period, TMI, for the HNLF fiber parameters, pump wavelength (1.55 μm) and power (6.3 W) of the experiment. The corresponding computed single-shot spectrum after propagation in the 50 m length of HNLF: pump bandwidths: (b) 0.33, (d) 2.58, and (f) 6.24 nm. The spectral input pump line is shown with a dashed curve.

Fig. 10.
Fig. 10.

Single-shot spectral evolutions as a function of propagation length in the HNLF for three input pump bandwidths: (a) 0.56, (b) 4.25, and (c) 38.66 nm.

Fig. 11.
Fig. 11.

Single-shot spectrograms after the full 50 m propagation length of the HNLF for three input pump bandwidths: (a) 0.56, (b) 4.25, and (c) 38.66 nm.

Fig. 12.
Fig. 12.

Output spectrum (averaged over 40 shots) obtained by pumping 20 m of fiber (γ=44W1km1, β2=0.012ps2km1) with a 10 W, 1065 nm CW source with the given pump bandwidth.

Fig. 13.
Fig. 13.

(a) Obtained supercontinuum width (20 dB level, averaged over 40 shots) obtained by pumping 20 m of fiber (γ=44W1km1) with a 10 W, 1065 nm CW source, as a function of pump bandwidth. Each curve has β2 scaled to achieve the γ/|β2| values shown. (b) Optimum pump bandwidth extracted from (a) compared to the corresponding MI bandwidth, with corresponding linear fit.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

TMI=2πΔωmi=2π2Pcw|β2|γ,
Esol=2P0τ0=PcwTMI.
P0=|β2|γτ02,
PcwTMI=2|β2|γτ0.
τ0=1π2TMI0.1TMI.
ωz|β2|τ04|β2|TMI4γ2Pcw2|β2|.
g(ω)=|β2ω|8γPcw|β2|ω22|β2ω|σ,
Γ(2)(τ)=E(t)E*(tτ)dt=F1[S(ω)],
τc|Γ(2)(τ)|FWHM2,
A(2)(τ)|Γ2(τ)|2+Ienv(t)Ienv(tτ)dt,
A˜(z,ω)z+[α(ω)2ik2βkk!(ωω0)k]A˜(z,ω)=iγωω0F[A(z,T)R(T)|A(z,TT)|2dT],

Metrics