Abstract

Unlike slow-light-based quantum memories, photon echoes offer the benefit of high speed and wide bandwidth. Over the last decade, the rephasing mechanism of photon echoes has been studied for quantum memories to overcome fundamental limitations in photon echoes, such as population inversion and low retrieval efficiency. Although these limitations have been overcome in modified photon echo schemes, photon storage time is still too short to apply it to long-distance quantum communications. For long-distance quantum communications, ultralong photon storage time of the order of seconds is needed to implement quantum repeaters. In this review article, challenging techniques for ultralong photon storage are presented, where ultralong storage is obtained via a coherence conversion process between optical and spin states by using an optical locking technique. To remove population-inversion-caused quantum noise, a double rephasing scheme is addressed, where rephasing-pulse-caused population inversion hinders photon echoes for quantum memory applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef]
  3. F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [CrossRef]
  4. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
    [CrossRef]
  5. C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
    [CrossRef]
  6. K. S. Choi, H. Deng, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
    [CrossRef]
  7. I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
    [CrossRef]
  8. T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
    [CrossRef]
  9. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
    [CrossRef]
  10. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [CrossRef]
  11. S. A. Moiseev and S. Kroll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
    [CrossRef]
  12. M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247, 393–403 (2005).
    [CrossRef]
  13. S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B 5, S497–S502 (2003).
    [CrossRef]
  14. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
    [CrossRef]
  15. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
    [CrossRef]
  16. G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
    [CrossRef]
  17. B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
    [CrossRef]
  18. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
    [CrossRef]
  19. G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
    [CrossRef]
  20. B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010).
    [CrossRef]
  21. B. S. Ham, “Ultralong quantum optical storage using an optical locking technique,” Nat. Photon. 3, 518–522 (2009).
    [CrossRef]
  22. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [CrossRef]
  23. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
    [CrossRef]
  24. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [CrossRef]
  25. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
    [CrossRef]
  26. L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007).
    [CrossRef]
  27. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
    [CrossRef]
  28. N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007).
    [CrossRef]
  29. R. M. Macfarlane and R. M. Shelby, “Coherent transient and holeburning spectroscopy of rare earth ions in solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, 1987).
  30. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
    [CrossRef]
  31. D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
    [CrossRef]
  32. E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
    [CrossRef]
  33. B. S. Ham and J. Hahn, “Atomic coherence swing in a double-A-type system using ultraslow light,” Opt. Lett. 34, 776–778 (2009).
    [CrossRef]
  34. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
    [CrossRef]
  35. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics79–95 (Addison-Wesley, 1974).
  36. M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
    [CrossRef]
  37. J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
    [CrossRef]
  38. N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
    [CrossRef]
  39. B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).
  40. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
    [CrossRef]
  41. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
    [CrossRef]
  42. B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).
  43. H. R. Gray, R. M. Whitley, and C. R. Stroud, “Coherent trapping of atomic populations,” Opt. Lett. 3, 218–220 (1978).
    [CrossRef]
  44. M. Fleischhauer and M. D. Lukin, “Dark-state polariton in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef]
  45. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [CrossRef]
  46. Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
    [CrossRef]
  47. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
    [CrossRef]
  48. M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
    [CrossRef]
  49. B. S. Ham, “Experimental demonstration of all-optical 1×2 quantum routing,” Appl. Phys. Lett. 85, 893–895 (2004).
    [CrossRef]
  50. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
    [CrossRef]
  51. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
    [CrossRef]
  52. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid,” Opt. Lett. 22, 1849–1851 (1997).
    [CrossRef]
  53. B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16, 5350–5361 (2008).
    [CrossRef]
  54. B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008).
    [CrossRef]
  55. B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808(R) (2008).
    [CrossRef]
  56. B. S. Ham, “Reversible quantum optical data storage based on resonant Raman optical field excited spin coherence,” Opt. Express 16, 14304–14313 (2008).
    [CrossRef]
  57. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998).
    [CrossRef]
  58. M. Mitsunaga and N. Uesugi, “248-bit optical storage in Eu3+:YalO3 by accumulated photon echoes,” Opt. Lett. 15, 195–197 (1990).
    [CrossRef]
  59. J. Hahn and B. S. Ham, “Rephasing halted photon echoes using controlled optical deshelving,” New J. Phys. 13, 093011 (2011).
    [CrossRef]
  60. R. Yano, M. Mitsunaga, and N. Useugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YalO3,” Phys. Rev. B 45, 12752–12759 (1992).
    [CrossRef]
  61. K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993).
    [CrossRef]
  62. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
    [CrossRef]
  63. B. S. Ham, “A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time,” Opt. Express 18, 17749–17755 (2010).
    [CrossRef]
  64. B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).
  65. S. A. Moiseev, N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optical QED cavity,” Phys. Rev. A 82, 022311 (2010).
    [CrossRef]
  66. B. S. Ham, “Atom phase controlled noise-free photon echoes,” arXiv:1101.5480 (2011).

2011 (1)

J. Hahn and B. S. Ham, “Rephasing halted photon echoes using controlled optical deshelving,” New J. Phys. 13, 093011 (2011).
[CrossRef]

2010 (7)

B. S. Ham, “A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time,” Opt. Express 18, 17749–17755 (2010).
[CrossRef]

S. A. Moiseev, N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optical QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010).
[CrossRef]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

2009 (6)

J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

B. S. Ham and J. Hahn, “Atomic coherence swing in a double-A-type system using ultraslow light,” Opt. Lett. 34, 776–778 (2009).
[CrossRef]

B. S. Ham, “Ultralong quantum optical storage using an optical locking technique,” Nat. Photon. 3, 518–522 (2009).
[CrossRef]

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[CrossRef]

2008 (9)

B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16, 5350–5361 (2008).
[CrossRef]

B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008).
[CrossRef]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808(R) (2008).
[CrossRef]

B. S. Ham, “Reversible quantum optical data storage based on resonant Raman optical field excited spin coherence,” Opt. Express 16, 14304–14313 (2008).
[CrossRef]

G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef]

K. S. Choi, H. Deng, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[CrossRef]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

2007 (4)

L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007).
[CrossRef]

N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef]

2006 (1)

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef]

2005 (2)

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247, 393–403 (2005).
[CrossRef]

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

2004 (2)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

B. S. Ham, “Experimental demonstration of all-optical 1×2 quantum routing,” Appl. Phys. Lett. 85, 893–895 (2004).
[CrossRef]

2003 (3)

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B 5, S497–S502 (2003).
[CrossRef]

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

2002 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

2001 (6)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

S. A. Moiseev and S. Kroll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

2000 (2)

M. Fleischhauer and M. D. Lukin, “Dark-state polariton in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

1998 (3)

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

1997 (4)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
[CrossRef]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[CrossRef]

1995 (1)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

1993 (1)

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993).
[CrossRef]

1992 (2)

R. Yano, M. Mitsunaga, and N. Useugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YalO3,” Phys. Rev. B 45, 12752–12759 (1992).
[CrossRef]

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

1990 (1)

1982 (1)

1978 (1)

1969 (1)

B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).

1964 (1)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[CrossRef]

1950 (1)

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[CrossRef]

Abella, I. D.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[CrossRef]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Afzelius, M.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007).
[CrossRef]

Alexander, A. L.

G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef]

Amari, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Amari, N.

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

Andre, A.

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Andrianov, N.

S. A. Moiseev, N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optical QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

Arimondo, E.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef]

Awad, E.

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
[CrossRef]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Beaudoin, F.

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Belov, N. V.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).

Binder, R.

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Boyer, V.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Chaneliere, T.

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Choi, K. S.

K. S. Choi, H. Deng, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Cirac, J. I.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Cone, R. L.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

Croci, M.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993).
[CrossRef]

Damen, T. C.

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

de Riedmatten, H.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

K. S. Choi, H. Deng, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Eisaman, M. D.

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Equall, R. W.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

Fiurasek, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

Fleischhauer, A.

F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polariton in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

Gisin, N.

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007).
[CrossRef]

Gisin, N. A.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef]

Gorshkov, A. V.

I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[CrossRef]

Gray, H. R.

Gubaidullin, F. F.

S. A. Moiseev, N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optical QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

Hahn, E. L.

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[CrossRef]

Hahn, J.

Ham, B. S.

J. Hahn and B. S. Ham, “Rephasing halted photon echoes using controlled optical deshelving,” New J. Phys. 13, 093011 (2011).
[CrossRef]

B. S. Ham, “A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time,” Opt. Express 18, 17749–17755 (2010).
[CrossRef]

B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010).
[CrossRef]

B. S. Ham, “Ultralong quantum optical storage using an optical locking technique,” Nat. Photon. 3, 518–522 (2009).
[CrossRef]

B. S. Ham and J. Hahn, “Atomic coherence swing in a double-A-type system using ultraslow light,” Opt. Lett. 34, 776–778 (2009).
[CrossRef]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808(R) (2008).
[CrossRef]

B. S. Ham, “Reversible quantum optical data storage based on resonant Raman optical field excited spin coherence,” Opt. Express 16, 14304–14313 (2008).
[CrossRef]

B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16, 5350–5361 (2008).
[CrossRef]

B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008).
[CrossRef]

B. S. Ham, “Experimental demonstration of all-optical 1×2 quantum routing,” Appl. Phys. Lett. 85, 893–895 (2004).
[CrossRef]

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B 5, S497–S502 (2003).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[CrossRef]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
[CrossRef]

B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).

B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).

B. S. Ham, “Atom phase controlled noise-free photon echoes,” arXiv:1101.5480 (2011).

Harris, S. E.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

Hartmann, S. R.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Hemmer, P. R.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998).
[CrossRef]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[CrossRef]

Hetet, G.

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef]

Holliday, K.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993).
[CrossRef]

Hosseini, B.

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

Huang, M.

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

Ilyukhin, V. V.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Jahnke, F.

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Jelezko, F.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Jenkins, S. D.

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Jiang, L.

L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007).
[CrossRef]

Julsgaard, B.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

Kennedy, T. A. B.

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Khaneja, N.

L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007).
[CrossRef]

Kharitonov, Yu. A.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).

Kim, D. S.

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

Kim, M. K.

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[CrossRef]

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
[CrossRef]

Kimble, H. J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

K. S. Choi, H. Deng, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Kocharovskaya, O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

Kohler, K.

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Kroll, S.

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247, 393–403 (2005).
[CrossRef]

S. A. Moiseev and S. Kroll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

Kröll, S.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Kurnit, N. A.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[CrossRef]

Kuzmich, A.

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Kwong, N. H.

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Lam, P. K.

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef]

Lamb, W. E.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics79–95 (Addison-Wesley, 1974).

Lan, S.-Y.

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Langford, N. K.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Laurat, J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Lauritzen, B.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Le Gouet, J.-L.

J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

Lee, K. C.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Lett, P. D.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Longdell, J. J.

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Lukin, M. D.

L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007).
[CrossRef]

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polariton in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. M. Macfarlane and R. M. Shelby, “Coherent transient and holeburning spectroscopy of rare earth ions in solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, 1987).

Mair, A.

F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Maksimov, B. A.

B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).

Manson, N. B.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef]

Marino, A. M.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[CrossRef]

Markham, M.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Matsukevich, D. N.

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

McCormick, C. F.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef]

Minar, J.

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Mitsunaga, M.

R. Yano, M. Mitsunaga, and N. Useugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YalO3,” Phys. Rev. B 45, 12752–12759 (1992).
[CrossRef]

M. Mitsunaga and N. Uesugi, “248-bit optical storage in Eu3+:YalO3 by accumulated photon echoes,” Opt. Lett. 15, 195–197 (1990).
[CrossRef]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Moiseev, S. A.

S. A. Moiseev, N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optical QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B 5, S497–S502 (2003).
[CrossRef]

S. A. Moiseev and S. Kroll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

Mossberg, T. W.

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

Neumann, P.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Nilsson, M.

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247, 393–403 (2005).
[CrossRef]

Novikova, I.

I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[CrossRef]

Nunn, J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Philips, F. F.

F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Philips, M.

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Philips, N. B.

I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[CrossRef]

Phillips, D. F.

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Polzik, E. S.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

Pooser, R. C.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[CrossRef]

Ram, R. J.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

Reim, K. F.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Rostovtsev, Y.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

Ruggiero, J.

J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

Rumyantsev, I.

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Sabooni, M.

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

Sangouard, N.

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007).
[CrossRef]

Sargent, M.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics79–95 (Addison-Wesley, 1974).

Schafer, W.

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

Schmidt, H.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

Schmitt-Rink, S.

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

Scully, M. O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics79–95 (Addison-Wesley, 1974).

Sellars, M. J.

G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef]

Shah, J.

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid,” Opt. Lett. 22, 1849–1851 (1997).
[CrossRef]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

Shelby, R. M.

R. M. Macfarlane and R. M. Shelby, “Coherent transient and holeburning spectroscopy of rare earth ions in solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, 1987).

Sherson, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

Simon, C.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007).
[CrossRef]

Sparkes, B. M.

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

Sparkes, G.

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef]

Stroud, C. R.

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Takayama, R.

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Tarasov, V. F.

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B 5, S497–S502 (2003).
[CrossRef]

Taylor, J. M.

L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007).
[CrossRef]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

Twichen, D.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Uesugi, N.

Useugi, N.

R. Yano, M. Mitsunaga, and N. Useugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YalO3,” Phys. Rev. B 45, 12752–12759 (1992).
[CrossRef]

Usmani, I.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

Van der Wal, C. H.

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Vauthey, E.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993).
[CrossRef]

Walmsley, I. A.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Walsworth, R. L.

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Walther, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

Wang, H.

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Whitley, R. M.

Wild, U. P.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993).
[CrossRef]

Wrachtrup, J.

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Wu, C.

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
[CrossRef]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Yano, R.

R. Yano, M. Mitsunaga, and N. Useugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YalO3,” Phys. Rev. B 45, 12752–12759 (1992).
[CrossRef]

Zbinden, H.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Zhao, Y.

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
[CrossRef]

Zibrov, A. S.

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

B. S. Ham, “Experimental demonstration of all-optical 1×2 quantum routing,” Appl. Phys. Lett. 85, 893–895 (2004).
[CrossRef]

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

J. Opt. B (1)

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B 5, S497–S502 (2003).
[CrossRef]

Nat. Mater. (1)

G. Balasubramanian, P. Neumann, D. Twichen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[CrossRef]

Nat. Photon. (2)

B. S. Ham, “Ultralong quantum optical storage using an optical locking technique,” Nat. Photon. 3, 518–522 (2009).
[CrossRef]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010).
[CrossRef]

Nature (10)

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communications with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

B. Hosseini, B. M. Sparkes, G. Sparkes, G. Hetet, J. J. Longdell, and P. K. Lam, “Coherent optical pulse sequencer for quantum applications,” Nature 461, 241–245 (2009).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef]

K. S. Choi, H. Deng, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[CrossRef]

New J. Phys. (1)

J. Hahn and B. S. Ham, “Rephasing halted photon echoes using controlled optical deshelving,” New J. Phys. 13, 093011 (2011).
[CrossRef]

Opt. Commun. (2)

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247, 393–403 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. (1)

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[CrossRef]

Phys. Rev. A (6)

N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photon based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75, 032327 (2007).
[CrossRef]

I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78, 021802 (2008).
[CrossRef]

J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

N. Sangouard, C. Simon, J. Minar, M. Afzelius, T. Chaneliere, and N. Gisin, “Impossibility of faithfully storing single photons with the three-pulse photon echo,” Phys. Rev. A 81, 062333 (2010).
[CrossRef]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78, 011808(R) (2008).
[CrossRef]

S. A. Moiseev, N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optical QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

Phys. Rev. B (4)

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58, R11828–R11831 (1998).
[CrossRef]

R. Yano, M. Mitsunaga, and N. Useugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YalO3,” Phys. Rev. B 45, 12752–12759 (1992).
[CrossRef]

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741–14752 (1993).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

Phys. Rev. Lett. (17)

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polariton in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

M. Philips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexcition,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

M. Sabooni, F. Beaudoin, A. Walther, N. Amari, M. Huang, and S. Kroll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef]

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641–644 (1997).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef]

G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef]

S. A. Moiseev and S. Kroll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

F. F. Philips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[CrossRef]

D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, “Unusually slow temporal evolution of femtosecond four-wave mixing signals in intrinsic GaAa quantum wells: direct evidence for the dominance of interaction effect,” Phys. Rev. Lett. 69, 2725–2728 (1992).
[CrossRef]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

L. Jiang, J. M. Taylor, N. Khaneja, and M. D. Lukin, “Optical approach to quantum communication using dynamic programming,” Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007).
[CrossRef]

Science (1)

C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Sov. Phys. Dokl. (1)

B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of Y-oxysilicate Y2(SiO4)O,” Sov. Phys. Dokl. 13, 1188–1190 (1969).

Other (5)

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics79–95 (Addison-Wesley, 1974).

B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).

B. S. Ham, “Atom phase controlled noise-free photon echoes,” arXiv:1101.5480 (2011).

B. S. Ham, “On-demand control of photon echoes far exceeding the spin coherence constraint via coherence swapping between optical and spin transitions,” arXiv:1010.4870 (2010).

R. M. Macfarlane and R. M. Shelby, “Coherent transient and holeburning spectroscopy of rare earth ions in solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of spontaneous emission noise in Pr:YSO. D, incoming beam diameter; d, focused beam diameter.

Fig. 2.
Fig. 2.

Numerical simulations of two-pulse photon echo. (a) Energy level diagram with an inhomogeneously broadened two-level system interacting with resonant field. (b) Pulse sequence. (c) Coherence Imρ13 as a function of time for summation of all interacting atoms. (d) Coherence Imρ13 as a function of time for individual atoms. (e) Ground state population ρ11. (f) Coherence Imρ13. TD=5μs; TR=10μs. Optical inhomogeneous width (FWHM): 340 kHz.

Fig. 3.
Fig. 3.

Numerical simulations of three-pulse photon echo. (a) Pulse sequence: the rephasing pulse in Fig. 2(a) is divided into two halves, WRITE pulse W and READ pulse Re. (b) Coherence Imρ13 as a function of time for (a). (c)–(e) Coherence conversion between Imρ13 and ρ11 (or ρ33). Dotted is for ρ33. Pulse area of D is π/10.

Fig. 4.
Fig. 4.

(a)–(d) Numerical simulations of on-resonance Raman echoes. Each pulse is composed of P and C. The rephasing R turns on at t=40μs. ΩP=ΩC=2.5/2MHz for rephasing at t=40μs. Each maximum in (d) indicates 2π pulse area of the Raman data composed of P and C, where ΩC=2.5MHz and ΩP=ΩC/100.

Fig. 5.
Fig. 5.

(a)–(f) Numerical simulations of optical locking applied to the on-resonance Raman echoes in Fig. 4. Γ31=Γ32=Γ34=1kHz, γ31=γ32=γ34=1kHz, Γ21=0, and γ21=1kHz. Cyan, ρ11; magenta, ρ22; red, ρ33; green, ρ44. Each data-pulse duration is 3 μs. Initial condition: ρ11=1.

Fig. 6.
Fig. 6.

(a)–(d) Numerical simulations of optical locking applied to the two-pulse photon echoes in Fig. 2. Γ31=Γ32=Γ34=1kHz, γ31=γ32=γ34=1kHz, Γ21=0, and γ21=1kHz. TD=5μs, TR=10μs, TB1=10.1μs, and TB2=55.0μs. Initial condition: ρ11=1. Δ12=200kHz.

Fig. 7.
Fig. 7.

(a)–(d) Numerical simulations of optical locking applied to the three-pulse photon echoes in Fig. 3. Γ31=Γ32=Γ34=1kHz; γ31=γ32=γ34=1kHz; Γ21=0; γ21=1kHz. TD=5μs; TR=10μs; TW=10.0μs; TB1=10.1μs; TB2=55.0μs; TRe=55.1μs. Initial condition: ρ11=1. Δ12=200kHz.

Fig. 8.
Fig. 8.

Numerical simulations of optical locking applied to the three-pulse photon echoes. (a) Energy level diagram for the optical locking. (b) Pulse sequence of (a). (c),(e),(g) Numerical calculations for a two-pulse photon echo as a reference (see also Fig. 2). (d),(f),(h) Numerical calculations for (b). Γ31=Γ32=Γ34=1kHz; γ31=γ32=γ34=1kHz; Γ21=0; γ21=1kHz. TD=5μs; TR=10μs; TW=10.0μs; TB1=10.1μs; TB2=55.0μs; TRe=55.1μs. Initial condition: ρ11=1. Δ12=200kHz.

Fig. 9.
Fig. 9.

Optical-depth-independent echo retrieval efficiency using a backward propagation scheme. (a) Energy level diagram for optical locking applied to two-pulse photon echoes. (b) Pulse sequence of (a). (c) Observed delayed echo signals overlapped all together. (d) Observed echo versus delay T.

Fig. 10.
Fig. 10.

Population-inversion-free photon echoes using double rephasing and control deshelving. (a) Energy level diagram. (b) Pulse sequence. (c) Pulse timing of (a). (d) Numerical simulations of optical coherence for inversionless echo E2 in (c). (e) Population. (f) Coherence for a detuned atom group by δ=20kHz. (g) Coherence as a function of time and detuning δ. (h) Excited state population as a function of time and detuning δ.

Fig. 11.
Fig. 11.

Population-inversion-free photon echoes using double rephasing and control deshelving for three-pulse photon echoes. (a) Energy level diagram. (b) Pulse sequence. (c) Pulse timing of (a). (d) Numerical simulations of optical coherence for inversionless echo E2 in (c). (e) Population. (f) Coherence for a detuned atom group by d=20kHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F=|Ψi|Ψf|2,
F=ρiρf,
TE=TB2+(TRTD)(TB1TR).
ΦB1+ΦB2=4nπ,
ΦB2=(4n1)π.
kE=kDkB1+kB2,
ωE=ωDωB1+ωB2,
kE=kD+kW+kRe.
ρ33=A[(1η)6+15η2(1η)4+15η4(1η)2+η6],

Metrics