Abstract

In [1,2] an error (by a factor of 1000) in the diffusion rate of monomer in a photopolymer material used by the authors of [3], is presented. In [3] no errors are identified in our analysis and our physical evidence is not addressed. It is implied that our model and our results are disproven by the results in the papers referenced in [3]. In fact these papers do not provide any such quantitative evidence. The observations made regarding the significance of the authors’ contributions, in particular the validity of their model and the practical importance of their material are also discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666(2011).
    [CrossRef]
  2. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part II: High spatial frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
    [CrossRef]
  3. Vincent Toal, Suzanne Martin, and Izabela Naydenova “Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: comment,” J. Opt. Soc. Am. B 28, 458–459 (2011).
  4. This form of referencing is standard in the literature and is used (a) for the sake of brevity and clarity, and (b) to recognize the role of a group leader. It is typically used to designate a body of work by a mixture of co-authors over an extended period of time under one leader.
  5. J. T. Sheridan and J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  6. M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19, 22423–22436 (2011).
  7. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
    [CrossRef]
  8. J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. 13, 9 (2011).
  9. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
  10. J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. 13, 10 (2011).
  11. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
  12. F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).
  13. M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).
  14. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
    [CrossRef]
  15. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
  16. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010).
    [CrossRef]
  17. M. Mohesh, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys. A 104, 899–902 (2011).
    [CrossRef]
  18. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

2011 (8)

Vincent Toal, Suzanne Martin, and Izabela Naydenova “Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: comment,” J. Opt. Soc. Am. B 28, 458–459 (2011).

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. 13, 10 (2011).

M. Mohesh, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys. A 104, 899–902 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. 13, 9 (2011).

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666(2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part II: High spatial frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
[CrossRef]

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19, 22423–22436 (2011).

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).

2010 (3)

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

2008 (1)

2005 (2)

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model,” Opt. Express 13, 6990–7004 (2005).

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

2001 (2)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).

2000 (1)

Berneth, H.

Bruder, F. K.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Bruder, F.-K.

Carr, A. J.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

Close, C. E.

Daniels, S. M.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

Deuber, F.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Fäcke, T.

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Gallego, S.

Gleeson, M. R.

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part II: High spatial frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666(2011).
[CrossRef]

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19, 22423–22436 (2011).

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. 13, 10 (2011).

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. 13, 9 (2011).

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model,” Opt. Express 13, 6990–7004 (2005).

Guo, J.

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. 13, 10 (2011).

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. 13, 9 (2011).

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19, 22423–22436 (2011).

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

Hagen, R.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Hönel, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Jurbergs, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Kelly, J. V.

Lawrence, J. R.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).

J. T. Sheridan and J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Liu, S.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

Lui, S.

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. 13, 10 (2011).

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. 13, 9 (2011).

Martin, Suzanne

Vincent Toal, Suzanne Martin, and Izabela Naydenova “Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: comment,” J. Opt. Soc. Am. B 28, 458–459 (2011).

Mohesh, M.

M. Mohesh, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys. A 104, 899–902 (2011).
[CrossRef]

Mooney, D. A.

Naydenova, I.

M. Mohesh, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys. A 104, 899–902 (2011).
[CrossRef]

Naydenova, Izabela

Vincent Toal, Suzanne Martin, and Izabela Naydenova “Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: comment,” J. Opt. Soc. Am. B 28, 458–459 (2011).

Neipp, C.

O’Neill, F. T.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model,” Opt. Express 13, 6990–7004 (2005).

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).

Rölle, T.

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Sabol, D.

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

Sheridan, J. T.

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. 13, 9 (2011).

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. 13, 10 (2011).

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19, 22423–22436 (2011).

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666(2011).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part II: High spatial frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model,” Opt. Express 13, 6990–7004 (2005).

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Toal, V.

M. Mohesh, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys. A 104, 899–902 (2011).
[CrossRef]

Toal, Vincent

Vincent Toal, Suzanne Martin, and Izabela Naydenova “Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: comment,” J. Opt. Soc. Am. B 28, 458–459 (2011).

Weiser, M. S.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Weiser, M.-S.

Appl. Phys. A (1)

M. Mohesh, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide based photopolymer film,” Appl. Phys. A 104, 899–902 (2011).
[CrossRef]

Appl. Phys. B (1)

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).

J. Mater. Sci. Lett. (1)

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. Lett. 40, 4129–4132 (2005).

J. Opt. (2)

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. 13, 9 (2011).

J. Guo, M. R. Gleeson, S. Lui, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. 13, 10 (2011).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Macromolecules (1)

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formations,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

Opt. Eng. (1)

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).

Opt. Express (3)

Optik (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Proc. SPIE (1)

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I (2010).

Other (1)

This form of referencing is standard in the literature and is used (a) for the sake of brevity and clarity, and (b) to recognize the role of a group leader. It is typically used to designate a body of work by a mixture of co-authors over an extended period of time under one leader.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics