Abstract

The infrared (IR) transmission and reflection properties of the ceramic thermal barrier coatings have great implications on the overall performance of a component operated at high temperatures, where a significant amount of heat from external IR radiation will propagate through the coating toward the underlying substrate. A high-temperature photonic structure can be used to limit this radiation transport while operating at temperatures above 1000°C. Herein, we present the concept of a broadband and angle-insensitive IR reflector, based on 3D photonic crystals (PhCs) that consists of a ceramic material with high thermal stability and low thermal conductivity. We numerically demonstrate that the multistack ceramic 3D PhCs can provide >80% of bi-hemispherical reflectance in the wavelength region of 15μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc. 24, 1–10 (2004).
    [CrossRef]
  2. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
    [CrossRef]
  3. H.-J. Rätzer-Scheibe, U. Schulz, and T. Krell, “The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings,” Surf. Coat. Technol. 200, 5636–5644(2006).
    [CrossRef]
  4. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, 1992).
  5. J. I. Eldridge, C. M. Spuckler, K. W. Street, and J. R. Markham, Infrared Radiative Properties of Yttria—Stabilized Zirconia Thermal Barrier Coatings (Wiley, 2008).
  6. W. P. Allen, “Reflective coatings to reduce radiation heat transfer,” U.S. patent 0008170 A1 (2003).
  7. D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
    [CrossRef]
  8. M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
    [CrossRef]
  9. V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
    [CrossRef]
  10. J. I. Eldridge, C. M. Spuckler, and J. R. Markham, “Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures,” J. Am. Ceram. Soc. 92, 2276–2285 (2009).
    [CrossRef]
  11. G. Lim and A. Kar, “Radiative properties of thermal barrier coatings at high temperatures,” J. Phys. D 42, 155412 (2009).
    [CrossRef]
  12. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
    [CrossRef]
  13. S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
    [CrossRef]
  14. Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
    [CrossRef]
  15. J. Li, S. Luan, W. Huang, and Y. Han, “Colloidal crystal heterostructures by a two-step vertical deposition method,” Colloid Surf. A 295, 107–112 (2007).
    [CrossRef]
  16. A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
    [CrossRef]
  17. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .
  18. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett 65, 3152–3155 (1990).
    [CrossRef]
  19. F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
    [CrossRef]
  20. F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
    [CrossRef]
  21. S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
    [CrossRef]
  22. R. Rengarajan, P. Jiang, V. Colvin, and D. Mittleman, “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517–3519 (2000).
    [CrossRef]
  23. S. John and K. Busch, “Photonic bandgap formation and tunability in certain self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999).
    [CrossRef]
  24. E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
    [CrossRef]
  25. J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci. 244, 511–516 (2005).
    [CrossRef]
  26. D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
    [CrossRef]
  27. K. P. Velikov, A. Moroz, and A. van Blaaderen, “Photonic crystals of core-shell colloidal particles,” Appl. Phys. Lett. 80, 49–51 (2002).
    [CrossRef]
  28. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centred cubic lattices,” J. Phys. 11, 997–1008(1999).
    [CrossRef]
  29. J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
    [CrossRef]
  30. www.CST.com .

2010 (3)

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
[CrossRef]

S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
[CrossRef]

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

2009 (4)

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
[CrossRef]

J. I. Eldridge, C. M. Spuckler, and J. R. Markham, “Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures,” J. Am. Ceram. Soc. 92, 2276–2285 (2009).
[CrossRef]

G. Lim and A. Kar, “Radiative properties of thermal barrier coatings at high temperatures,” J. Phys. D 42, 155412 (2009).
[CrossRef]

2008 (2)

V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
[CrossRef]

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
[CrossRef]

2007 (1)

J. Li, S. Luan, W. Huang, and Y. Han, “Colloidal crystal heterostructures by a two-step vertical deposition method,” Colloid Surf. A 295, 107–112 (2007).
[CrossRef]

2006 (2)

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

H.-J. Rätzer-Scheibe, U. Schulz, and T. Krell, “The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings,” Surf. Coat. Technol. 200, 5636–5644(2006).
[CrossRef]

2005 (3)

D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
[CrossRef]

J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci. 244, 511–516 (2005).
[CrossRef]

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[CrossRef]

2004 (1)

X. Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc. 24, 1–10 (2004).
[CrossRef]

2002 (2)

K. P. Velikov, A. Moroz, and A. van Blaaderen, “Photonic crystals of core-shell colloidal particles,” Appl. Phys. Lett. 80, 49–51 (2002).
[CrossRef]

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

2001 (2)

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

2000 (2)

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
[CrossRef]

R. Rengarajan, P. Jiang, V. Colvin, and D. Mittleman, “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517–3519 (2000).
[CrossRef]

1999 (2)

S. John and K. Busch, “Photonic bandgap formation and tunability in certain self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999).
[CrossRef]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centred cubic lattices,” J. Phys. 11, 997–1008(1999).
[CrossRef]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett 65, 3152–3155 (1990).
[CrossRef]

Aizenberg, J.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
[CrossRef]

Allen, W. P.

W. P. Allen, “Reflective coatings to reduce radiation heat transfer,” U.S. patent 0008170 A1 (2003).

Basu, D.

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
[CrossRef]

Bechger, L.

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

Blanco, A.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

Braginsky, L.

V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
[CrossRef]

Brinkmann, R.

F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
[CrossRef]

Busch, K.

Cai, X.-G.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Cao, S.

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

Cao, X.

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
[CrossRef]

Cao, X. Q.

X. Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc. 24, 1–10 (2004).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett 65, 3152–3155 (1990).
[CrossRef]

Chen, S.-L.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Chiang, Y.-M.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
[CrossRef]

Colvin, V.

R. Rengarajan, P. Jiang, V. Colvin, and D. Mittleman, “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517–3519 (2000).
[CrossRef]

Davis, S.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
[CrossRef]

Dong, P.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Eldridge, J.

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

Eldridge, J. I.

J. I. Eldridge, C. M. Spuckler, and J. R. Markham, “Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures,” J. Am. Ceram. Soc. 92, 2276–2285 (2009).
[CrossRef]

D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
[CrossRef]

J. I. Eldridge, C. M. Spuckler, K. W. Street, and J. R. Markham, Infrared Radiative Properties of Yttria—Stabilized Zirconia Thermal Barrier Coatings (Wiley, 2008).

Gaillot, D.

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[CrossRef]

Garcia-Santamaria, F.

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

Gil, S. C.

S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
[CrossRef]

Graugnard, E.

J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci. 244, 511–516 (2005).
[CrossRef]

Hafner, C.

V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
[CrossRef]

Han, Y.

J. Li, S. Luan, W. Huang, and Y. Han, “Colloidal crystal heterostructures by a two-step vertical deposition method,” Colloid Surf. A 295, 107–112 (2007).
[CrossRef]

Hatton, B.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
[CrossRef]

Heineman, D.

J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci. 244, 511–516 (2005).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett 65, 3152–3155 (1990).
[CrossRef]

Howell, J. R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, 1992).

Hu, C.-T.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Hu, J.

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

Huang, W.

J. Li, S. Luan, W. Huang, and Y. Han, “Colloidal crystal heterostructures by a two-step vertical deposition method,” Colloid Surf. A 295, 107–112 (2007).
[CrossRef]

Ibisate, M.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

Jiang, P.

R. Rengarajan, P. Jiang, V. Colvin, and D. Mittleman, “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517–3519 (2000).
[CrossRef]

Jin, X.

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

John, S.

Kar, A.

G. Lim and A. Kar, “Radiative properties of thermal barrier coatings at high temperatures,” J. Phys. D 42, 155412 (2009).
[CrossRef]

Kelly, M. J.

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

Kim, S.

S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
[CrossRef]

King, J. S.

J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci. 244, 511–516 (2005).
[CrossRef]

Krell, T.

H.-J. Rätzer-Scheibe, U. Schulz, and T. Krell, “The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings,” Surf. Coat. Technol. 200, 5636–5644(2006).
[CrossRef]

Lee, W.

S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
[CrossRef]

Li, J.

J. Li, S. Luan, W. Huang, and Y. Han, “Colloidal crystal heterostructures by a two-step vertical deposition method,” Colloid Surf. A 295, 107–112 (2007).
[CrossRef]

Lim, G.

G. Lim and A. Kar, “Radiative properties of thermal barrier coatings at high temperatures,” J. Phys. D 42, 155412 (2009).
[CrossRef]

Lopez, C.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

Lopez-Tejeira, F.

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

Luan, S.

J. Li, S. Luan, W. Huang, and Y. Han, “Colloidal crystal heterostructures by a two-step vertical deposition method,” Colloid Surf. A 295, 107–112 (2007).
[CrossRef]

Markham, J. R.

J. I. Eldridge, C. M. Spuckler, and J. R. Markham, “Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures,” J. Am. Ceram. Soc. 92, 2276–2285 (2009).
[CrossRef]

J. I. Eldridge, C. M. Spuckler, K. W. Street, and J. R. Markham, Infrared Radiative Properties of Yttria—Stabilized Zirconia Thermal Barrier Coatings (Wiley, 2008).

Marlow, F.

F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
[CrossRef]

Mendive, C.

F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
[CrossRef]

Meseguer, F.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

Miller, R.

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

Miller, R. A.

D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
[CrossRef]

Mishchenko, L.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
[CrossRef]

Mishrikey, M.

V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
[CrossRef]

Mittleman, D.

R. Rengarajan, P. Jiang, V. Colvin, and D. Mittleman, “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517–3519 (2000).
[CrossRef]

Miyazaki, H. T.

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

Moroz, A.

K. P. Velikov, A. Moroz, and A. van Blaaderen, “Photonic crystals of core-shell colloidal particles,” Appl. Phys. Lett. 80, 49–51 (2002).
[CrossRef]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centred cubic lattices,” J. Phys. 11, 997–1008(1999).
[CrossRef]

Muldarisnur,

F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
[CrossRef]

Palacios-Lidon, E.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

Rätzer-Scheibe, H.-J.

H.-J. Rätzer-Scheibe, U. Schulz, and T. Krell, “The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings,” Surf. Coat. Technol. 200, 5636–5644(2006).
[CrossRef]

Rengarajan, R.

R. Rengarajan, P. Jiang, V. Colvin, and D. Mittleman, “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517–3519 (2000).
[CrossRef]

Sanchez-Dehesa, J.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

Sandhage, K. H.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
[CrossRef]

Schulz, U.

H.-J. Rätzer-Scheibe, U. Schulz, and T. Krell, “The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings,” Surf. Coat. Technol. 200, 5636–5644(2006).
[CrossRef]

Seo, Y. G.

S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
[CrossRef]

Shao, Q.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
[CrossRef]

Sharifi, P.

F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
[CrossRef]

Sheng, W.

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

Shin, J.

S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
[CrossRef]

Shklover, V.

V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
[CrossRef]

Siegel, R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, 1992).

Singh, J.

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
[CrossRef]

Sommers, C.

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centred cubic lattices,” J. Phys. 11, 997–1008(1999).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett 65, 3152–3155 (1990).
[CrossRef]

Spuckler, C. M.

J. I. Eldridge, C. M. Spuckler, and J. R. Markham, “Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures,” J. Am. Ceram. Soc. 92, 2276–2285 (2009).
[CrossRef]

J. I. Eldridge, C. M. Spuckler, K. W. Street, and J. R. Markham, Infrared Radiative Properties of Yttria—Stabilized Zirconia Thermal Barrier Coatings (Wiley, 2008).

Stoever, D.

X. Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc. 24, 1–10 (2004).
[CrossRef]

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
[CrossRef]

Street, K. W.

J. I. Eldridge, C. M. Spuckler, K. W. Street, and J. R. Markham, Infrared Radiative Properties of Yttria—Stabilized Zirconia Thermal Barrier Coatings (Wiley, 2008).

Summers, C. J.

J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci. 244, 511–516 (2005).
[CrossRef]

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[CrossRef]

Teh, L. K.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
[CrossRef]

Tietz, F.

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
[CrossRef]

van Blaaderen, A.

K. P. Velikov, A. Moroz, and A. van Blaaderen, “Photonic crystals of core-shell colloidal particles,” Appl. Phys. Lett. 80, 49–51 (2002).
[CrossRef]

Vassen, R.

X. Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc. 24, 1–10 (2004).
[CrossRef]

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
[CrossRef]

Velikov, K. P.

K. P. Velikov, A. Moroz, and A. van Blaaderen, “Photonic crystals of core-shell colloidal particles,” Appl. Phys. Lett. 80, 49–51 (2002).
[CrossRef]

Vos, W. L.

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

Wang, A.-J.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Wijnhoven, J. E. G. J.

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

Witz, G.

V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
[CrossRef]

Wolfe, D. E.

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
[CrossRef]

Wong, C. C.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
[CrossRef]

Wu, W.

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

Yamashita, T.

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[CrossRef]

Yan, Q.

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
[CrossRef]

Yuan, G.-M.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Yuan, X.

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

Zhang, D.-Z.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Zhou, Q.

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Zhu, D.-M.

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
[CrossRef]

Angew. Chem. Int. Ed. (1)

F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angew. Chem. Int. Ed. 48, 6212–6233 (2009).
[CrossRef]

Appl. Phys. Lett (1)

F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, and H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Appl. Phys. Lett 79, 2309–2311(2001).
[CrossRef]

Appl. Phys. Lett. (3)

R. Rengarajan, P. Jiang, V. Colvin, and D. Mittleman, “Optical properties of a photonic crystal of hollow spherical shells,” Appl. Phys. Lett. 77, 3517–3519 (2000).
[CrossRef]

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, C. Lopez, and J. Sanchez-Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,” Appl. Phys. Lett. 81, 4925–4927 (2002).
[CrossRef]

K. P. Velikov, A. Moroz, and A. van Blaaderen, “Photonic crystals of core-shell colloidal particles,” Appl. Phys. Lett. 80, 49–51 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci. 244, 511–516 (2005).
[CrossRef]

Chem. Mater. (1)

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

ChemInform (1)

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stoever, “ChemInform abstract: zirconates as new materials for thermal barrier coatings,” ChemInform 31, 20–23 (2000).
[CrossRef]

Chin. Phys. Lett. (1)

A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhang, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett. 26, 024210 (2009).
[CrossRef]

Colloid Surf. A (1)

J. Li, S. Luan, W. Huang, and Y. Han, “Colloidal crystal heterostructures by a two-step vertical deposition method,” Colloid Surf. A 295, 107–112 (2007).
[CrossRef]

Int. J. Appl. Ceram. Technol. (1)

M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol. 3, 81–93 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. I. Eldridge, C. M. Spuckler, and J. R. Markham, “Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures,” J. Am. Ceram. Soc. 92, 2276–2285 (2009).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-temperature photonic structures. Thermal barrier coatings, infrared sources and other applications,” J. Comput. Theor. Nanosci. 5, 862–893 (2008).
[CrossRef]

J. Eur. Ceram. Soc. (1)

X. Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc. 24, 1–10 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. (1)

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centred cubic lattices,” J. Phys. 11, 997–1008(1999).
[CrossRef]

J. Phys. D (1)

G. Lim and A. Kar, “Radiative properties of thermal barrier coatings at high temperatures,” J. Phys. D 42, 155412 (2009).
[CrossRef]

J. Polym. Sci. Part A (1)

S. Cao, X. Jin, X. Yuan, W. Wu, J. Hu, and W. Sheng, “A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness,” J. Polym. Sci. Part A 48, 1332–1338 (2010).
[CrossRef]

Langmuir (1)

Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir 24, 1796–1800 (2008).
[CrossRef]

Phys. Rev. B (1)

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[CrossRef]

Phys. Rev. Lett (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett 65, 3152–3155 (1990).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010).
[CrossRef]

Surf. Coat. Technol. (2)

D. E. Wolfe, J. Singh, R. A. Miller, J. I. Eldridge, and D.-M. Zhu, “Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications,” Surf. Coat. Technol. 190, 132–149 (2005).
[CrossRef]

H.-J. Rätzer-Scheibe, U. Schulz, and T. Krell, “The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings,” Surf. Coat. Technol. 200, 5636–5644(2006).
[CrossRef]

Thin Solid Films (1)

S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, “High-speed fabrication of 3-dimensional colloidal photonic crystal films by slide coating of polymer microspheres with continuous feeding of colloidal suspension,” Thin Solid Films 518, 5731–5736 (2010).
[CrossRef]

Other (5)

http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, 1992).

J. I. Eldridge, C. M. Spuckler, K. W. Street, and J. R. Markham, Infrared Radiative Properties of Yttria—Stabilized Zirconia Thermal Barrier Coatings (Wiley, 2008).

W. P. Allen, “Reflective coatings to reduce radiation heat transfer,” U.S. patent 0008170 A1 (2003).

www.CST.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Blackbody radiation emission spectra at high temperatures. The shaded area represents the transparent region of YSZ material, which indicates that a significant amount of radiation will be transmitted through the YSZ coating.

Fig. 2.
Fig. 2.

Relative gap width Δω/ω as a function of the shell thickness for: (a) YSZ hollow-sphere direct opal. The structure has a maximum gap width Δω/ω of 7.6% when it reaches the full sphere limit. (b) YSZ core-shell direct opal. For comparison, both YSZ-core Al2O3-shell and Al2O3-core YSZ-shell particles are considered. The result shows that the PhCs with high-index core and low-index shell posses a larger gap width in comparison to the opposite case. (c) YSZ inverse shell opal structure, where the coating thickness is a function of the core radius. The dashed area indicates the limit due to the conformal infiltration techniques, such as the ALD method. The air void space of the structure will close when the coating thickness reaches 15.5% of the sphere radii and further infiltration cannot be achieved. (d) Comparison of the ΓL gap width for all the YSZ FCC structures with different topologies. The inverse opal structures exhibit the largest gap-to-midgap ratio Δω/ω of 15.6% and the hollow-spheres direct opals show the lowest. Insets show the schematic illustrations of the structures.

Fig. 3.
Fig. 3.

(a) Schematic illustration of the simulation model for a 10-layer YSZ inverse opal. It consists of FCC lattice of air spheres in the YSZ matrix (gray color). The periodic boundaries were applied to the xz planes and the yz planes of the structure. The incidence radiation is defined as s-polarized when the electric field (E) is perpendicular to the diffraction plane and is defined as p-polarized in the case of parallel. (b) Transmission spectra of inverse opal for the thicknesses of 6, 10, and 15 layers at the normal incidence. Insets show the linear relation between the extinction at the stop gap and the thickness of the structure.

Fig. 4.
Fig. 4.

Angular diagram of YSZ inverse opal structure for various values of angle φ at the incidence angle θ=20°. Insets show the schematic view of the azimuth angle employed for the calculations (upper right) and the transmission spectrum of the structure at incidence angle θ=20° (lower right), respectively.

Fig. 5.
Fig. 5.

Angle-resolved transmittance spectra of a single-stack YSZ inverse opal (sphere size=930nm) for (a) s polarization and (b) p polarization. The azimuth angle is fixed at φ=0°. The blue region at the wavelength of 2000nm represents the ΓL stop gap of the inverse opal. If the radiation falls within this spectral region, it will be strongly reflected. The stop gaps in both cases shift to shorter wavelengths for the elevated incidence angle.

Fig. 6.
Fig. 6.

(a) Calculated transmittance spectra for a single-stack inverse opal with sphere size 516nm. (b) Multiplication of transmittance spectra for two stacks inverse opal with sphere sizes 516 and 616nm. The inset shows the schematic illustration of the structure. (c) Angle-resolved multiplication of transmittance for a multistack inverse opal structure. Both polarizations are taken into account (50% of s polarization and 50% of p polarization).

Fig. 7.
Fig. 7.

Normal incidence transmission spectrum (solid line) of a 520/640nm inverted heterostructure (9 monolayers in each stack) compared to the product of the transmission spectra from the constituents (dashed line). The inset shows the simulation model used in the calculation.

Tables (1)

Tables Icon

Table 1. Optimized Parameters for the Multistack Inverse Opal Structure

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

mλ=2d111neff2sin2θ,
RH=I·R(θ,φ,λ)cosθsinθdθdφIcosθsinθdθdφ,

Metrics