Abstract

We introduce the concept of a resonant tunneling photonic nanotriode that makes possible the mutual control of cross-cut light flows. The idea of this concept is based on the strong resonant interaction between the nearly phase-matched quasi-localized eigenmode of nonlinear planar dielectric waveguides and incident beams. We demonstrate that by means of variation of input guided wave intensities even small nonlinear phase mismatches may switch the bistable system from one equilibrium state to another and back, resulting in deep modulation of beam reflection and transmission coefficients due to the exchange between trapped and free photons. The suggested nanosize device can also serve as light amplifier, light modulator, controlled coupler, light flows divider, etc.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: Towards polaritonic logic circuits,” Nat. Photon. 4, 345–346 (2010).
    [CrossRef]
  2. D. A. B. Miller, “Are optical transistors the next logical step?” Nat. Photon. 4, 3–5 (2010).
    [CrossRef]
  3. A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
  4. S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).
  5. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef]
  6. H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, 1985).
  7. M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).
  8. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
    [CrossRef]
  9. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer-Verlag, 2007).
  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  11. L. Cao and M. L. Brongersma, “Active plasmonics: Ultrafast developments,” Nat. Photon. 3, 12–13 (2009).
    [CrossRef]
  12. V. M. Shalaev and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science, 2007).
  13. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [CrossRef]
  14. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
    [CrossRef]
  15. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef]
  16. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
    [CrossRef]
  17. J. Oksanen and I. Tulkki, “Coherent optical logic by laser amplifiers with feedback,” J. Lightw. Technol. 24, 4918–4924(2006).
    [CrossRef]
  18. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef]
  19. Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
    [CrossRef]
  20. A. I. Smirnov and A. A. Zharov, “Nonparaxial solitons,” in Soliton-driven Photonics, A. D. Boardman and A. P. Sukhorukov, eds. (Kluwer, 2000), pp. 141–167.
  21. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1961).
  22. A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).
  23. A. V. Afanas’ev, A. P. Aleksandrov, N. A. Agareva, N. V. Sapogova, A. E. Mochalova, L. A. Smirnova, and N. M. Bityurin, “Ultraviolet-induced variation of the optical properties of dielectrics in the infrared region,” J. Opt. Technol. 78, 537–543 (2011).
    [CrossRef]

2011 (1)

2010 (5)

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: Towards polaritonic logic circuits,” Nat. Photon. 4, 345–346 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the next logical step?” Nat. Photon. 4, 3–5 (2010).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

2009 (2)

L. Cao and M. L. Brongersma, “Active plasmonics: Ultrafast developments,” Nat. Photon. 3, 12–13 (2009).
[CrossRef]

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

2008 (2)

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

2007 (1)

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

2006 (2)

J. Oksanen and I. Tulkki, “Coherent optical logic by laser amplifiers with feedback,” J. Lightw. Technol. 24, 4918–4924(2006).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

1996 (1)

Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
[CrossRef]

Afanas’ev, A. V.

Agareva, N. A.

Aleksandrov, A. P.

Aliev, Y. M.

Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
[CrossRef]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Bityurin, N. M.

Boardman, A. D.

Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Brongersma, M. L.

L. Cao and M. L. Brongersma, “Active plasmonics: Ultrafast developments,” Nat. Photon. 3, 12–13 (2009).
[CrossRef]

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer-Verlag, 2007).

Cao, L.

L. Cao and M. L. Brongersma, “Active plasmonics: Ultrafast developments,” Nat. Photon. 3, 12–13 (2009).
[CrossRef]

Chen, B.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Coway, J.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

Dalton, L.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Davoyan, A. R.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Deych, L. I.

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: Towards polaritonic logic circuits,” Nat. Photon. 4, 345–346 (2010).
[CrossRef]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

Elliot, S. R.

A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, 1985).

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

Halas, N. G.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Hochberg, M.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

James, W. D.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

Jen, A. K. Y.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Kawata, S.

V. M. Shalaev and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science, 2007).

Kik, P. G.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer-Verlag, 2007).

Kivshar, Y. S.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

Korn, G. A.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1961).

Korn, T. M.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1961).

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Lee, H.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

Lee, M. H.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

Lisyansky, A. A.

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: Towards polaritonic logic circuits,” Nat. Photon. 4, 345–346 (2010).
[CrossRef]

Liu, J.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Menon, V. M.

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: Towards polaritonic logic circuits,” Nat. Photon. 4, 345–346 (2010).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the next logical step?” Nat. Photon. 4, 3–5 (2010).
[CrossRef]

Mochalova, A. E.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Oksanen, J.

J. Oksanen and I. Tulkki, “Coherent optical logic by laser amplifiers with feedback,” J. Lightw. Technol. 24, 4918–4924(2006).
[CrossRef]

Parker, J.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Podolsky, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Sapogova, N. V.

Scherer, A.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Shadrivov, I. V.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science, 2007).

Shi, Z.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Smirnov, A. I.

Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
[CrossRef]

A. I. Smirnov and A. A. Zharov, “Nonparaxial solitons,” in Soliton-driven Photonics, A. D. Boardman and A. P. Sukhorukov, eds. (Kluwer, 2000), pp. 141–167.

Smirnova, L. A.

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Staffaroni, M.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Sullivan, P.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

Tulkki, I.

J. Oksanen and I. Tulkki, “Coherent optical logic by laser amplifiers with feedback,” J. Lightw. Technol. 24, 4918–4924(2006).
[CrossRef]

Van Thourhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Wang, G.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

West, J. L.

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

Xie, K.

Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
[CrossRef]

Yablonovich, E.

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

Zakery, A.

A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).

Zharov, A. A.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
[CrossRef]

A. I. Smirnov and A. A. Zharov, “Nonparaxial solitons,” in Soliton-driven Photonics, A. D. Boardman and A. P. Sukhorukov, eds. (Kluwer, 2000), pp. 141–167.

Zhu, G.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

J. Lightw. Technol. (1)

J. Oksanen and I. Tulkki, “Coherent optical logic by laser amplifiers with feedback,” J. Lightw. Technol. 24, 4918–4924(2006).
[CrossRef]

J. Opt. Technol. (1)

Nano Lett. (2)

A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).

S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009).

Nat. Mater. (1)

M. Hochberg, T. Baehr-Jones, G. Wang, J. Parker, K. Harvard, J. Liu, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “All optical modulator in silicon with terahertz bandwidth,” Nat. Mater. 5, 703–709 (2006).

Nat. Photon. (5)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010).
[CrossRef]

V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: Towards polaritonic logic circuits,” Nat. Photon. 4, 345–346 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the next logical step?” Nat. Photon. 4, 3–5 (2010).
[CrossRef]

L. Cao and M. L. Brongersma, “Active plasmonics: Ultrafast developments,” Nat. Photon. 3, 12–13 (2009).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Phys. Rev. E (1)

Y. M. Aliev, A. D. Boardman, A. I. Smirnov, K. Xie, and A. A. Zharov, “Spatial dynamics of solitonlike channels near interfaces between optically linear and nonlinear media,” Phys. Rev. E 53, 5409–5419 (1996).
[CrossRef]

Phys. Rev. Lett. (4)

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Science (1)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Other (7)

A. I. Smirnov and A. A. Zharov, “Nonparaxial solitons,” in Soliton-driven Photonics, A. D. Boardman and A. P. Sukhorukov, eds. (Kluwer, 2000), pp. 141–167.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1961).

A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).

H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, 1985).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer-Verlag, 2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

V. M. Shalaev and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Planar dielectric structure. Red lines with arrows 1, 2, 3 indicate incident, reflected, and transmitted beams relatively. The red dashed line shows the field structure of leaking guided mode supported by thin core waveguide with nonlinear dielectric permittivity ϵw. To provide a phase matching of incident and guided waves, the dielectric permittivities of each layer of the structure must obey the following hierarchy: ϵw,ϵp>ϵs. (b) Schematic sketch of interaction unit.

Fig. 2.
Fig. 2.

Linear stationary case. The dependencies of reflection (1), transmission (2), and light flow dividing coefficients (3) on the length of interaction region at radiation damping coefficient γr=1/5μm1 for phase mismatches (a) δ/γr=0, (b) δ/γr=1, (c) δ/γr=2.

Fig. 3.
Fig. 3.

Dependencies of reflection (1) and transmission (2) coefficients of incident plane wave (L) on the normalized phase mismatch δ/γr.

Fig. 4.
Fig. 4.

Bistability of transmitted (a) and reflected (b) plane waves. Curves 1, 2 correspond to different intensities of incident beam: |N01|2<|N0C|2 and |N02|2>|N0C|2.

Fig. 5.
Fig. 5.

(a) Reflected (1), transmitted (2), output (3) energy flows and (b) static amplification coefficients KR(1), KT(2) dependencies on input power of guided mode at phase mismatch δ/γr=8 for the wide beam with constant amplitude N0=3γr/α>N0C throughout the interaction region L=3/γr. All energy flows are normalized in response to the characteristic nonlinear value γr/α=INL.

Fig. 6.
Fig. 6.

The field structures at fixed amplitude of incident beam N0=2.4γr/α, interaction region L=3/γr, input power of guided mode Iin=1.25γr/α, and two phase mismatches (a) δ/γr=0, (b) δ/γr=2.

Fig. 7.
Fig. 7.

Frequency dependencies of amplification coefficient K˜T at different parameters q=TNLγrVg: (1) q=0, (2) q=0.25, (3) q=1 corresponding to (1) TNL=0, (2) TNL=7fs, (3) TNL=28fs for optimal [see Fig. 5] bias input energy flow Iin(0)6.7INL (INL3.4×106W/cm).

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

ΔE+k02ϵ(z,|E|2)E=0,
ϵ(z,|E|2)={ϵp,|z|>d+aϵs,a<|z|<d+a,ϵw(|E|2),|z|<a
k0ϵp,k0ϵw>h>k0ϵs.
ΔE1+k02ϵ1(z,|E|2)E1=k02E2{ϵsϵw(|E|2),|z|<a0,|z|>aF1,
ΔE2+k02ϵ2(z)E2=k02E1{ϵsϵp,|z|>a+d0,|z|<a+dF2,
ϵ1={ϵw(|E|2),|z|<aϵs,|z|>a,
ϵ2={ϵs,|z|<a+dϵp,|z|>a+d.
h=k0ϵs(1+(k0a)2(ϵwϵs)22ϵs)
E2(0)(z<d)Eiexp(ikxx)(exp(ikz(z+d))κs(0)ikzκs(0)+ikzexp(ikz(z+d))),
E2(0)(|z|<d)Ei2kzkz+iκs(0)exp(ikxxκs(0)(z+d)),
E˜2(|z|>d)E1(0)exp(ihx)(exp(κs|z|)+2κsκs+ikpexp(κsd+ikpdikp|z|)),
E˜2(|z|<d)E1(0)2exp(ihx2κsd)κsikpκs+ikpcosh(κsz),
ω(h)=ω0(h0)+Δω,z,
h=h0+Δh,
|Δω|ω0,|Δh|h01,
Δω=it,Δh=ix,
E1={G(t,x)E1(0)(z)+δE1(t,x,z)}exp(ikxx),
1VgGt+Gx+(γr+γ)G+i(δ+δNL)G=γrN.
γIm(ϵs)2|ϵs|k0,
γrRe(4k0k03a3(ϵwϵs)3ϵs(ϵpϵs)e2k02(ϵwϵs)ad)
|G(t,x=L2)|2+L2L2|N(t,x,z=ad)|2dx=|G(t,x=L2)|2+L2L2SR(t,x)dx+L2L2ST(t,x)dx+1VgtL2L2|G(t,x)|2dx
|G(x=L2)|2=γr|N0|2γr2+δ2{1+e2γrL2eγrLcos(δL)},
WT=L2L2ST(x)dx=γr2|N0|2γr2+δ2{L+12γr(1e2γrL)2γrγr2+δ2(1eγrL(cos(δL)δγrsin(δL)))},
WR=|N0|2L|G(x=L2)|2WT.
KR,T=dWR,TdIin|Iin=Iin(0),
Iin(t)=Iin(0)+ΔIsin(Ωt).
1VgGt+Gx+(γr+γ)G+i(δ+δ(NL))G=γrN,
TNLδ(NL)t+δ(NL)=α|G|2,
K˜T(Ω)=limΔI0ΔWTΔI,

Metrics