Abstract

We report detailed experimental studies in a single wavelength-band system of correlated photon-pair generation in a 1.5 μm telecommunication wavelength-band using cascaded χ(2):χ(2) processes, second-harmonic generation, and the following spontaneous parametric down conversion (c-SHG/SPDC), in a periodically poled LiNbO3 (PPLN) ridge-waveguide device. By using a PPLN module with 600%/W of the SHG efficiency, we achieved a coincidence-to-accidental ratio (CAR) of 2380 at 1.8×104 of the mean number of the signal photon per pulse. Detailed investigation on the origin of uncorrelated noise photons was also discussed in this paper. We revealed that the noise photons mainly originated from spontaneous Raman scattering induced in pigtail optical fibers and also that the PPLN device itself had poor contribution to the noise photons. This feature of the c-SHG/SPDC process is promising for the realization of a noise-photon-free, high-purity quantum entangled photon-pair source.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription