Abstract

We report detailed experimental studies in a single wavelength-band system of correlated photon-pair generation in a 1.5 μm telecommunication wavelength-band using cascaded χ(2):χ(2) processes, second-harmonic generation, and the following spontaneous parametric down conversion (c-SHG/SPDC), in a periodically poled LiNbO3 (PPLN) ridge-waveguide device. By using a PPLN module with 600%/W of the SHG efficiency, we achieved a coincidence-to-accidental ratio (CAR) of 2380 at 1.8×104 of the mean number of the signal photon per pulse. Detailed investigation on the origin of uncorrelated noise photons was also discussed in this paper. We revealed that the noise photons mainly originated from spontaneous Raman scattering induced in pigtail optical fibers and also that the PPLN device itself had poor contribution to the noise photons. This feature of the c-SHG/SPDC process is promising for the realization of a noise-photon-free, high-purity quantum entangled photon-pair source.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
    [CrossRef]
  2. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).
    [CrossRef]
  3. D. Magde and H. Mahr, “Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A,” Phys. Rev. Lett. 18, 905–907 (1967).
    [CrossRef]
  4. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [CrossRef]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef]
  6. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [CrossRef]
  7. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
    [CrossRef]
  8. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
  9. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008).
    [CrossRef]
  10. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  11. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004).
    [CrossRef]
  12. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
    [CrossRef]
  13. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
    [CrossRef]
  14. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
    [CrossRef]
  15. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
    [CrossRef]
  16. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [CrossRef]
  17. H. Takesue and K. Inoue, “1.5 μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
    [CrossRef]
  18. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
    [CrossRef]
  19. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
    [CrossRef]
  20. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
    [CrossRef]
  21. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007).
    [CrossRef]
  22. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
    [CrossRef]
  23. B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002).
    [CrossRef]
  24. K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
    [CrossRef]
  25. M. Hunault, H. Takesue, O. Tadanaga, Y. Noshida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett. 35, 1239–1241 (2010).
    [CrossRef]
  26. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19, 16032–16043 (2011).
    [CrossRef]
  27. Y-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. B 40, 437–443 (2007).
    [CrossRef]
  28. T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23, 161–163 (2011).
    [CrossRef]
  29. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with s sine wave gating,” Opt. Express 14, 10043–10049 (2006).
    [CrossRef]
  30. N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22, 529–531 (2010).
    [CrossRef]
  31. H. Takesue and K. Inoue, “Generation of 1.5 μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
    [CrossRef]
  32. B. Zhou, C. Q. Xu, and B. Chen, “Comparison of difference-frequency generation and cascaded χ(2) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides,” J. Opt. Soc. Am. B 20, 846–852 (2003).
    [CrossRef]
  33. H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
    [CrossRef]
  34. R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966).
    [CrossRef]
  35. D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003).
    [CrossRef]
  36. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [CrossRef]
  37. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
    [CrossRef]
  38. T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
    [CrossRef]

2011 (2)

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23, 161–163 (2011).
[CrossRef]

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19, 16032–16043 (2011).
[CrossRef]

2010 (3)

M. Hunault, H. Takesue, O. Tadanaga, Y. Noshida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett. 35, 1239–1241 (2010).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22, 529–531 (2010).
[CrossRef]

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[CrossRef]

2009 (2)

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
[CrossRef]

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
[CrossRef]

2008 (4)

2007 (3)

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007).
[CrossRef]

Y-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. B 40, 437–443 (2007).
[CrossRef]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
[CrossRef]

2006 (2)

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with s sine wave gating,” Opt. Express 14, 10043–10049 (2006).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
[CrossRef]

2005 (3)

2004 (3)

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

2003 (3)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[CrossRef]

B. Zhou, C. Q. Xu, and B. Chen, “Comparison of difference-frequency generation and cascaded χ(2) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides,” J. Opt. Soc. Am. B 20, 846–852 (2003).
[CrossRef]

D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003).
[CrossRef]

2002 (4)

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

1999 (2)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

1993 (1)

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

1967 (2)

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).
[CrossRef]

D. Magde and H. Mahr, “Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A,” Phys. Rev. Lett. 18, 905–907 (1967).
[CrossRef]

1966 (1)

R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966).
[CrossRef]

1961 (1)

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Adachi, S.

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22, 529–531 (2010).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Arahira, S.

Asobe, M.

M. Hunault, H. Takesue, O. Tadanaga, Y. Noshida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett. 35, 1239–1241 (2010).
[CrossRef]

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[CrossRef]

Baek, B.

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

Banfi, G. P.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Byer, R. L.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).
[CrossRef]

Canalias, C.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Chen, B.

B. Zhou, C. Q. Xu, and B. Chen, “Comparison of difference-frequency generation and cascaded χ(2) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides,” J. Opt. Soc. Am. B 20, 846–852 (2003).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

Chen, J.

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
[CrossRef]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

De Micheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

Duligall, J.

Dyer, S. D.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Fan, J.

Fejer, M. M.

Fiorentino, M.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Fragemann, A.

Fujimura, M.

D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003).
[CrossRef]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

Fukuda, H.

Fulconis, J.

Gisin, N.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

Harada, K.

Harris, S. E.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).
[CrossRef]

Hirosawa, K.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
[CrossRef]

Hunault, M.

Inoue, K.

H. Takesue and K. Inoue, “Generation of 1.5 μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

H. Takesue and K. Inoue, “1.5 μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Inoue, S.

Itabashi, S.

Ito, Y.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
[CrossRef]

Jiang, Y-K.

Y-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. B 40, 437–443 (2007).
[CrossRef]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[CrossRef]

Kannari, F.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
[CrossRef]

Karlsson, A.

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
[CrossRef]

Kikuchi, K.

Kishimoto, T.

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19, 16032–16043 (2011).
[CrossRef]

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23, 161–163 (2011).
[CrossRef]

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kumar, P.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Kurimura, S.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
[CrossRef]

Kurz, J. R.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Langrock, C.

Laurell, F.

Lee, K. F.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
[CrossRef]

Li, X.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
[CrossRef]

Lim, H. C.

Ling, A.

Ljunggren, D.

Louisell, W. H.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Magde, D.

D. Magde and H. Mahr, “Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A,” Phys. Rev. Lett. 18, 905–907 (1967).
[CrossRef]

Mahr, H.

D. Magde and H. Mahr, “Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A,” Phys. Rev. Lett. 18, 905–907 (1967).
[CrossRef]

Marsden, P.

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Migdall, A.

Morita, T.

D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003).
[CrossRef]

Nakagome, H.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
[CrossRef]

Nakajima, H.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
[CrossRef]

Nakamura, K.

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23, 161–163 (2011).
[CrossRef]

Nam, S. W.

Namekata, N.

Noshida, Y.

Oshman, M. K.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

Parameswaran, K. R.

Pearlman, A. J.

Pelton, M.

Rarity, G.

Roussev, R. V.

Route, R. K.

Russell, P. S. J.

Sasamori, S.

Sato, D.

D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003).
[CrossRef]

Schaufele, R. F.

R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Shih, Y. H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Siegman, A. E.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Stevens, M. J.

Suhara, T.

D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003).
[CrossRef]

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[CrossRef]

M. Hunault, H. Takesue, O. Tadanaga, Y. Noshida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett. 35, 1239–1241 (2010).
[CrossRef]

Takesue, H.

M. Hunault, H. Takesue, O. Tadanaga, Y. Noshida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett. 35, 1239–1241 (2010).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007).
[CrossRef]

H. Takesue and K. Inoue, “1.5 μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[CrossRef]

H. Takesue and K. Inoue, “Generation of 1.5 μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Tan, H.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

Tang, X. H.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

Tanzilli, S.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

Tengner, M.

Tittel, W.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

Tokura, Y.

Tomaselli, A.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

Tomita, A.

Y-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. B 40, 437–443 (2007).
[CrossRef]

Tsuchida, H.

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[CrossRef]

Tsuchizawa, T.

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[CrossRef]

Ushio, H.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
[CrossRef]

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
[CrossRef]

Voss, P. L.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

Wadsworth, W. J.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Watanabe, T.

Weber, M. J.

R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966).
[CrossRef]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Wong, F. N. C.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Xie, X.

Xu, C. Q.

B. Zhou, C. Q. Xu, and B. Chen, “Comparison of difference-frequency generation and cascaded χ(2) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides,” J. Opt. Soc. Am. B 20, 846–852 (2003).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

Yaegashi, H.

Yamada, K.

Yamamoto, Y.

Yariv, A.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Yoshizawa, A.

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[CrossRef]

Zbinden, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Zhang, Q.

Zhou, B.

B. Zhou, C. Q. Xu, and B. Chen, “Comparison of difference-frequency generation and cascaded χ(2) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides,” J. Opt. Soc. Am. B 20, 846–852 (2003).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006).
[CrossRef]

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003).
[CrossRef]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).

IEEE J. Quantum Electron. (2)

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002).
[CrossRef]

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22, 529–531 (2010).
[CrossRef]

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23, 161–163 (2011).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

Y-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. B 40, 437–443 (2007).
[CrossRef]

New J. Phys. (1)

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007).
[CrossRef]

Opt. Express (11)

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004).
[CrossRef]

G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[CrossRef]

H. Takesue and K. Inoue, “1.5 μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[CrossRef]

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with s sine wave gating,” Opt. Express 14, 10043–10049 (2006).
[CrossRef]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008).
[CrossRef]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
[CrossRef]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[CrossRef]

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
[CrossRef]

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19, 16032–16043 (2011).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (2)

R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966).
[CrossRef]

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[CrossRef]

Phys. Rev. A (5)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009).
[CrossRef]

H. Takesue and K. Inoue, “Generation of 1.5 μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

Phys. Rev. Lett. (4)

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).
[CrossRef]

D. Magde and H. Mahr, “Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A,” Phys. Rev. Lett. 18, 905–907 (1967).
[CrossRef]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a) Standard SPDC process and (b) cascaded SHG/SPDC process used in this work.

Fig. 2.
Fig. 2.

Photographs of (a) z-surface of the PPLN substrate after fabricating periodic domain inversion and (b) end facet of PPLN ridge waveguide. (c) Typical SHG curve of the PPLN ridge-waveguide device. Open circles: experimental results. Red curve: theoretical fitting assuming sinc-function.

Fig. 3.
Fig. 3.

Experimental setup. PM-EDFA: polarization-maintaining erbium-doped fiber amplifier. OBF: optical bandpass filter. LPF: optical low pass filter. WDM: WDM filter. D1, D2: InGaAs/InP-APD single-photon detector (SPD).

Fig. 4.
Fig. 4.

Total transmittance characteristics of the optical filters after the PPLN module. Black curve: transmittance for the signal photons (1538.7 nm). Red curve: transmittance for the idler photons (1558.6 nm). The blue arrow indicates the wavelength of the pump photons (1548.6 nm).

Fig. 5.
Fig. 5.

(a) Dependence of the single count rates of the signal photons (black closed circles) and the idler photons (red open squares) on the averaged power of the pump pulse. (b) Dependence of the coincidence count rates (black closed circles) on the averaged power of the pump pulse. Accidental count rates were also shown as red open squares.

Fig. 6.
Fig. 6.

(a) Dependence of the CAR on the mean number of the signal photon per pulse. (b), (c), (d) Time-correlation histograms when the mean number of the signal photon was (b) 0.00481, (c) 0.00135, and (d) 0.000178, respectively.

Fig. 7.
Fig. 7.

Dependence of single count rates per pulse of the idler photons on the averaged power of pump pulse under phase mismatching condition (red closed circles) and without the PPLN module (blue open squares). The single count rate under the QPM condition was also shown as a black dashed curve for comparison (the same data as those in Fig. 5(a)).

Fig. 8.
Fig. 8.

Calculation of the CAR as a function of the mean number of the signal photon per pulse. Black circles: experimental results. Dashed gray curve: ideal case without the dark counts of the SPDs and the noise photons (μxn=dx=0). Blue curve: calculation only considering the dark counts of the SPDs (μxn=0). Green curve: calculation only considering the noise photons in Fig. 7 (dx=0). Red curve: calculation considering both the dark counts and the noise photons.

Fig. 9.
Fig. 9.

Dependence of μc/μsn on the mean number of the photon-pair (μc). Black closed circles: results of the c-SHG/SPDC system in this work. Dashed color lines are calculation results for the SFWM-based system using dispersion-shifted fibers at 293 K (red), 77 K (blue), and 7 K (green) from literature values in [31].

Fig. 10.
Fig. 10.

Optical spectra of the PPLN module outputs in the CW-pumping experiments. (a) The pump wavelength satisfied the QPM condition (red curve). (b) The pump wavelength was deviated by 6.5 nm from the QPM wavelength (black curve). The pump power coupled to the PPLN module was (a) +16dBm and (b) +23.8dBm, respectively. The resolution bandwidth of the optical spectrum analyzer (OSA) was 1 nm.

Fig. 11.
Fig. 11.

Typical Raman spectra from a 1 km-length dispersion-shifted fiber at room temperature. The CW pump power was +19.5dBm. The resolution bandwidth of the OSA was 1 nm.

Fig. 12.
Fig. 12.

(a) Experimental setup to investigate pigtail fiber-induced Raman noise photons. (b) Dependence of the single count rates of the idler photons at 10 nm (red closed circles) and at 40 nm (blue open squares) of the wavelength offsets on the Lpig. (c) Dependence of the CAR on the Lpig.

Fig. 13.
Fig. 13.

Expectation on further improvement of CAR by the enhancement of effective optical nonlinearity (Γ).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2ωp=ωSHG=ωs+ωi.
SHG:2kp=kSHG+K,
SPDC:kSHG+K=ks+ki.
cs=(μc+μsn)αs+ds,
ci=(μc+μin)αi+di.
Rm=αsαiμc+csci.
Rum=csci,
CAR=RmRum=1+αsαiμccsci.
CARmax=1+1(dsαs+diαi)2

Metrics