Abstract

The bandwidth of chaotic signal in vertical-cavity surface-emitting lasers with optical injection has been studied experimentally. The results show that the bandwidth of chaotic signal, which is dependent on the frequency detuning and injection strength, can be enhanced by a factor of more than two with appropriate optical injection. Under certain conditions, optical injection can also result in a reduction of the chaotic signal bandwidth.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
    [CrossRef]
  2. T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimisu, “Observation of synchronization in laser chaos,” Phys. Rev. Lett. 72, 3502–3505 (1994).
    [CrossRef]
  3. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
    [CrossRef]
  4. S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity laser diodes,” Opt. Lett. 24, 1200–1202 (1999).
    [CrossRef]
  5. C. Masoller, “Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback,” Phys. Rev. Lett. 86, 2782–2785 (2001).
    [CrossRef]
  6. S. Tang and J. M. Liu, “Message encoding-decoding at 2.5  Gbits/s through synchronization of chaotic pulsing semiconductor lasers,” Opt. Lett. 26, 1843–1845 (2001).
    [CrossRef]
  7. T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
    [CrossRef]
  8. A. Uchida, Y. Liu, and P. Davis, “Characteristics of chaotic masking in synchronized semiconductor lasers,” IEEE J. Quantum Electron. 39, 963–970 (2003).
    [CrossRef]
  9. N. Fujiwara, Y. Takiguchi, and J. Ohtsubo, “Observation of the synchronization of chaos in mutually injected vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 28, 1677–1679(2003).
    [CrossRef]
  10. Y. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 29, 1215–1217(2004).
    [CrossRef]
  11. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
    [CrossRef]
  12. X. Li, W. Pan, B. Luo, and D. Ma, “Chaos synchronization and communication of cascade-coupled semiconductor lasers,” J. Lightwave Technol. 24, 4936–4945 (2006).
    [CrossRef]
  13. M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).
    [CrossRef]
  14. G.-Q. Xia, Z.-M. Wu, and J.-F. Liao, “Theoretical investigations of cascaded semiconductor lasers chaotic synchronization and communication based on optoelectronic negative feedback,” Opt. Commun. 282, 1009–1015 (2009).
    [CrossRef]
  15. F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10, 991–997 (2004).
    [CrossRef]
  16. K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
    [CrossRef]
  17. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
    [CrossRef]
  18. A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
    [CrossRef]
  19. A.-B. Wang, Y.-C. Wang, and J.-F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett. 34, 1144–1146 (2009).
    [CrossRef]
  20. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
    [CrossRef]
  21. X. Zhao, D. Parekh, E. K. Lau, H.-K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-μm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15, 14810–14816 (2007).
    [CrossRef]
  22. F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
    [CrossRef]
  23. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm vertical-cavity surface-emitting lasers (VCSELs),” Opt. Express 18, 9423–9428 (2010).
    [CrossRef]
  24. Y. Hong, P. S. Spencer, S. Bandyopadhyay, P. Rees, and K. A. Shore, “Polarization-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun. 216, 185–189 (2003).
    [CrossRef]
  25. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [CrossRef]
  26. S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “VCSEL polarization control by optical injection,” J. Lightwave Technol. 21, 2395–2404 (2003).
    [CrossRef]

2010 (1)

2009 (4)

A.-B. Wang, Y.-C. Wang, and J.-F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett. 34, 1144–1146 (2009).
[CrossRef]

G.-Q. Xia, Z.-M. Wu, and J.-F. Liao, “Theoretical investigations of cascaded semiconductor lasers chaotic synchronization and communication based on optoelectronic negative feedback,” Opt. Commun. 282, 1009–1015 (2009).
[CrossRef]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[CrossRef]

2008 (1)

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

2007 (3)

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

X. Zhao, D. Parekh, E. K. Lau, H.-K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-μm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15, 14810–14816 (2007).
[CrossRef]

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).
[CrossRef]

2006 (1)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

2004 (2)

2003 (5)

A. Uchida, Y. Liu, and P. Davis, “Characteristics of chaotic masking in synchronized semiconductor lasers,” IEEE J. Quantum Electron. 39, 963–970 (2003).
[CrossRef]

N. Fujiwara, Y. Takiguchi, and J. Ohtsubo, “Observation of the synchronization of chaos in mutually injected vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 28, 1677–1679(2003).
[CrossRef]

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “VCSEL polarization control by optical injection,” J. Lightwave Technol. 21, 2395–2404 (2003).
[CrossRef]

Y. Hong, P. S. Spencer, S. Bandyopadhyay, P. Rees, and K. A. Shore, “Polarization-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun. 216, 185–189 (2003).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

2002 (1)

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

2001 (2)

C. Masoller, “Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback,” Phys. Rev. Lett. 86, 2782–2785 (2001).
[CrossRef]

S. Tang and J. M. Liu, “Message encoding-decoding at 2.5  Gbits/s through synchronization of chaotic pulsing semiconductor lasers,” Opt. Lett. 26, 1843–1845 (2001).
[CrossRef]

1999 (1)

1998 (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

1994 (2)

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimisu, “Observation of synchronization in laser chaos,” Phys. Rev. Lett. 72, 3502–3505 (1994).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Adams, M. J.

Amann, M. C.

Amann, M.-C.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

Amano, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Aviad, Y.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[CrossRef]

Bandyopadhyay, S.

Y. Hong, P. S. Spencer, S. Bandyopadhyay, P. Rees, and K. A. Shore, “Polarization-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun. 216, 185–189 (2003).
[CrossRef]

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “VCSEL polarization control by optical injection,” J. Lightwave Technol. 21, 2395–2404 (2003).
[CrossRef]

Chang-Hasnain, C. J.

Chow, W. W.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

Chrostowski, L.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Davis, P.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

A. Uchida, Y. Liu, and P. Davis, “Characteristics of chaotic masking in synchronized semiconductor lasers,” IEEE J. Quantum Electron. 39, 963–970 (2003).
[CrossRef]

Elsäßer, W.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Faraji, B.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Fujiwara, N.

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Gatare, I.

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).
[CrossRef]

He, H.

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

Heil, T.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Hirano, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

Hofmann, W.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

X. Zhao, D. Parekh, E. K. Lau, H.-K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-μm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15, 14810–14816 (2007).
[CrossRef]

Hong, Y.

Hurtado, A.

Inoue, M.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

Kanter, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Lau, E. K.

Lee, M. W.

Li, X.

Liao, J.-F.

G.-Q. Xia, Z.-M. Wu, and J.-F. Liao, “Theoretical investigations of cascaded semiconductor lasers chaotic synchronization and communication based on optoelectronic negative feedback,” Opt. Commun. 282, 1009–1015 (2009).
[CrossRef]

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10, 991–997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10, 991–997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

S. Tang and J. M. Liu, “Message encoding-decoding at 2.5  Gbits/s through synchronization of chaotic pulsing semiconductor lasers,” Opt. Lett. 26, 1843–1845 (2001).
[CrossRef]

Liu, Y.

A. Uchida, Y. Liu, and P. Davis, “Characteristics of chaotic masking in synchronized semiconductor lasers,” IEEE J. Quantum Electron. 39, 963–970 (2003).
[CrossRef]

Locquet, A.

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).
[CrossRef]

Luo, B.

Ma, D.

Masoller, C.

C. Masoller, “Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback,” Phys. Rev. Lett. 86, 2782–2785 (2001).
[CrossRef]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Mulet, J.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Naito, S.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

Ohtsubo, J.

Pan, W.

Panajotov, K.

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).
[CrossRef]

Parekh, D.

Peil, M.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Pesquera, L.

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm vertical-cavity surface-emitting lasers (VCSELs),” Opt. Express 18, 9423–9428 (2010).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Quirce, A.

Rees, P.

Y. Hong, P. S. Spencer, S. Bandyopadhyay, P. Rees, and K. A. Shore, “Polarization-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun. 216, 185–189 (2003).
[CrossRef]

Reidler, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[CrossRef]

Rosenbluh, M.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[CrossRef]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

Sciamanna, M.

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).
[CrossRef]

Shimisu, T.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimisu, “Observation of synchronization in laser chaos,” Phys. Rev. Lett. 72, 3502–3505 (1994).
[CrossRef]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Y. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 29, 1215–1217(2004).
[CrossRef]

Y. Hong, P. S. Spencer, S. Bandyopadhyay, P. Rees, and K. A. Shore, “Polarization-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun. 216, 185–189 (2003).
[CrossRef]

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “VCSEL polarization control by optical injection,” J. Lightwave Technol. 21, 2395–2404 (2003).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity laser diodes,” Opt. Lett. 24, 1200–1202 (1999).
[CrossRef]

Sivaprakasam, S.

Spencer, P. S.

Sugawara, T.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimisu, “Observation of synchronization in laser chaos,” Phys. Rev. Lett. 72, 3502–3505 (1994).
[CrossRef]

Sung, H.-K.

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Tachikawa, M.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimisu, “Observation of synchronization in laser chaos,” Phys. Rev. Lett. 72, 3502–3505 (1994).
[CrossRef]

Takiguchi, Y.

Tang, S.

Thornburg, K. S.

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

Tsukamoto, T.

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimisu, “Observation of synchronization in laser chaos,” Phys. Rev. Lett. 72, 3502–3505 (1994).
[CrossRef]

Uchida, A.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

A. Uchida, Y. Liu, and P. Davis, “Characteristics of chaotic masking in synchronized semiconductor lasers,” IEEE J. Quantum Electron. 39, 963–970 (2003).
[CrossRef]

Valle, A.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

Wang, A.

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

Wang, A.-B.

Wang, J.-F.

Wang, Y.

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

Wang, Y.-C.

Wieczorek, S.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

Wu, M. C.

Wu, Z.-M.

G.-Q. Xia, Z.-M. Wu, and J.-F. Liao, “Theoretical investigations of cascaded semiconductor lasers chaotic synchronization and communication based on optoelectronic negative feedback,” Opt. Commun. 282, 1009–1015 (2009).
[CrossRef]

Xia, G.-Q.

G.-Q. Xia, Z.-M. Wu, and J.-F. Liao, “Theoretical investigations of cascaded semiconductor lasers chaotic synchronization and communication based on optoelectronic negative feedback,” Opt. Commun. 282, 1009–1015 (2009).
[CrossRef]

Yoshimori, S.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

Yoshimura, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

Zhao, X.

IEEE J. Quantum Electron. (4)

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

A. Uchida, Y. Liu, and P. Davis, “Characteristics of chaotic masking in synchronized semiconductor lasers,” IEEE J. Quantum Electron. 39, 963–970 (2003).
[CrossRef]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367–1379(2009).
[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 μm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13, 1200–1208 (2007).
[CrossRef]

F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10, 991–997 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 437, 343–346(2005).
[CrossRef]

Opt. Commun. (3)

G.-Q. Xia, Z.-M. Wu, and J.-F. Liao, “Theoretical investigations of cascaded semiconductor lasers chaotic synchronization and communication based on optoelectronic negative feedback,” Opt. Commun. 282, 1009–1015 (2009).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

Y. Hong, P. S. Spencer, S. Bandyopadhyay, P. Rees, and K. A. Shore, “Polarization-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun. 216, 185–189 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. E (1)

M. Sciamanna, I. Gatare, A. Locquet, and K. Panajotov, “Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. E 75, 056213 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009).
[CrossRef]

C. Masoller, “Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback,” Phys. Rev. Lett. 86, 2782–2785 (2001).
[CrossRef]

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimisu, “Observation of synchronization in laser chaos,” Phys. Rev. Lett. 72, 3502–3505 (1994).
[CrossRef]

Science (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental Setup. ML: master laser; SL: slave laser; ATTN: optical attenuator; RF: RF spectrum analyzer. OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

The light-current (L-I) curve of the standalone VCSEL. (a) total power; (b) polarization-resolved power. The black line and the gray (red online) line correspond to X-polarized light and Y-polarized light, respectively.

Fig. 3.
Fig. 3.

The power spectra of the chaotic signal with and without optical injection. The thick black line is for the chaotic signal with optical injection, the thick gray (red online) line is for the chaotic signal without optical injection, and the thin gray (green online) line is for noise floor.

Fig. 4.
Fig. 4.

The power spectra of the chaotic signal with the different frequency detuning. The thick black line is for the chaotic signal with optical injection, the thick gray (red online) line is for the chaotic signal without optical injection, and the thin gray (green online) line is for noise floor). (a), (b), (c), (d), (e), and (f) are for the frequency detuning of 8.8 GHz, 5.1 GHz, 0.3 GHz, 2.2GHz, 7.0GHz, and 10.7GHz, respectively.

Fig. 5.
Fig. 5.

The bandwidths of the SL’s chaotic output as a function of the frequency detuning. The black squares and gray line represent the chaotic bandwidth of the SL with and without the optical injection, respectively.

Fig. 6.
Fig. 6.

The injection locking diagram of the VCSEL subject to parallel polarized injection.

Fig. 7.
Fig. 7.

The optical spectra of the SL. (a) Standalone SL, (b) with optical feedback, (c)–(h) with optical feedback and injection; the frequency detunings are 6.6 GHz, 4.1 GHz, 0.4 GHz, 7.1GHz, 33.4GHz, and 37.1GHz, respectively.

Fig. 8.
Fig. 8.

The bandwidths of the SL’s chaotic output as a function of the injection ratio. The black squares and gray (red online) circles are for the frequency detuning 5.1 and 5.6GHz, respectively.

Metrics