Z. Wang, H. C. Yuan, and H. Y. Fan, “Nonclassicality of the photon addition-then subtraction coherent state and its decoherence in the photon-loss channel,” J. Opt. Soc. Am. B 28, 1964–1972 (2011).

[CrossRef]

S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011).

[CrossRef]

S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011).

[CrossRef]

L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010).

[CrossRef]

S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment,” J. Mod. Opt. 57, 1344–1354 (2010).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process,” Opt. Commun. 282, 932–935 (2009).

[CrossRef]

H. Y. Fan and L. Y. Hu, “Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379–4383 (2009).

[CrossRef]

Y. Yang and F. L. Li, “Nonclassicality of photon-subtracted and photon-added-then-subtracted Gaussian states,” J. Opt. Soc. Am. B 26, 830–835 (2009).

[CrossRef]

J. Lee, J. Kim, and H. Nha, “Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes,” J. Opt. Soc. Am. B 26, 1363–1369 (2009).

[CrossRef]

S. Y. Lee, J. Park, S. W. Ji, C. H. R. Ooi, and H. W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations,” J. Opt. Soc. Am. B 26, 1532–1537 (2009).

[CrossRef]

P. Marek, H. Jeong, and M. S. Kim, “Generating ‘squeezed’ superpositions of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811 (2008).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008).

[CrossRef]

H. Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics (IV)–Integrations within Weyl ordered product of operators and their application,” Ann. Phys. 323, 500–526 (2008).

[CrossRef]

W. L. You, Y. W. Li, and S. J. Gu, “Fidelity, dynamic structure factor, and susceptibility in critical phenomena,” Phys. Rev. E 76, 022101 (2007).

[CrossRef]

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).

[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).

[CrossRef]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).

[CrossRef]

A. Luis, “Squeezed coherent states as feasible approximations to phase-optimized states,” Phys. Lett. A 354, 71–78 (2006).

[CrossRef]

H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006).

[CrossRef]

M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005).

[CrossRef]

A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005).

[CrossRef]

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004).

[CrossRef]

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).

[CrossRef]

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of nonclassicality,” J. Opt. B 6, 396–404 (2004).

[CrossRef]

D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003).

[CrossRef]

M. Matsuoka and T. Hirano, “Quantum key distribution with a single photon from a squeezed coherent state,” Phys. Rev. A 67, 042307 (2003).

[CrossRef]

V. V. Dodonov, “Nonclassical states in quantum optics: a squeezed review of the first 75 years,” J. Opt. B 4, R1–R33 (2002).

[CrossRef]

G. S. Kumar and V. C. Kuriakose, “Squeezed coherent states representation of scalar field and particle production in the early universe,” Int. J. Theor. Phys. 39, 351–361 (2000).

[CrossRef]

M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997).

[CrossRef]

H. Y. Fan and M. Xiao, “A spacial type of squeezed coherent state,” Phys. Lett. A 220, 81–86 (1996).

[CrossRef]

M. Selvadoray, M. S. Kumar, and R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994).

[CrossRef]

K. Zhu, Q. Wang, and X. R. Li, “Nonclassical statistical properties of fields in squeezed even and squeezed odd coherent states,” J. Opt. Soc. Am. B 10, 1287–1291 (1993).

[CrossRef]

B. Dutta, N. Mukunda, R. Simon, and A. Subramaniam, “Squeezed states, photon-number distributions, and U(1) invariance,” J. Opt. Soc. Am. B 10, 253–264 (1993).

[CrossRef]

H. Y. Fan and V. J. Linde, “Similarity transformations in one- and two-mode Fock space,” J. Phys. A 24, 2529–2538(1991).

G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991).

[CrossRef]

H. Y. Fan, “Squeezed states: Operators for two types of one- and two-mode squeezing transformations,” Phys. Rev. A 41, 1526–1532 (1990).

B. Yurke, “Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors,” Phys. Rev. A 32, 300–310 (1985).

[CrossRef]

R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).

[CrossRef]

H. Paul, “Photon antibunching,” Rev. Mod. Phys. 54, 1061–1102 (1982).

[CrossRef]

D. Stoler, “ Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).

[CrossRef]

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).

[CrossRef]

G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991).

[CrossRef]

M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997).

[CrossRef]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).

[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004).

[CrossRef]

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).

[CrossRef]

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003).

[CrossRef]

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).

[CrossRef]

M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997).

[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).

[CrossRef]

V. V. Dodonov, “Nonclassical states in quantum optics: a squeezed review of the first 75 years,” J. Opt. B 4, R1–R33 (2002).

[CrossRef]

D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003).

[CrossRef]

Z. Wang, H. C. Yuan, and H. Y. Fan, “Nonclassicality of the photon addition-then subtraction coherent state and its decoherence in the photon-loss channel,” J. Opt. Soc. Am. B 28, 1964–1972 (2011).

[CrossRef]

S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011).

[CrossRef]

L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment,” J. Mod. Opt. 57, 1344–1354 (2010).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process,” Opt. Commun. 282, 932–935 (2009).

[CrossRef]

H. Y. Fan and L. Y. Hu, “Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379–4383 (2009).

[CrossRef]

H. Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics (IV)–Integrations within Weyl ordered product of operators and their application,” Ann. Phys. 323, 500–526 (2008).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008).

[CrossRef]

H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006).

[CrossRef]

H. Y. Fan and M. Xiao, “A spacial type of squeezed coherent state,” Phys. Lett. A 220, 81–86 (1996).

[CrossRef]

H. Y. Fan and V. J. Linde, “Similarity transformations in one- and two-mode Fock space,” J. Phys. A 24, 2529–2538(1991).

H. Y. Fan, “Squeezed states: Operators for two types of one- and two-mode squeezing transformations,” Phys. Rev. A 41, 1526–1532 (1990).

H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006).

[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).

[CrossRef]

W. L. You, Y. W. Li, and S. J. Gu, “Fidelity, dynamic structure factor, and susceptibility in critical phenomena,” Phys. Rev. E 76, 022101 (2007).

[CrossRef]

M. Matsuoka and T. Hirano, “Quantum key distribution with a single photon from a squeezed coherent state,” Phys. Rev. A 67, 042307 (2003).

[CrossRef]

S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment,” J. Mod. Opt. 57, 1344–1354 (2010).

[CrossRef]

L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process,” Opt. Commun. 282, 932–935 (2009).

[CrossRef]

H. Y. Fan and L. Y. Hu, “Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379–4383 (2009).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008).

[CrossRef]

P. Marek, H. Jeong, and M. S. Kim, “Generating ‘squeezed’ superpositions of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811 (2008).

[CrossRef]

M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005).

[CrossRef]

S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011).

[CrossRef]

S. Y. Lee, J. Park, S. W. Ji, C. H. R. Ooi, and H. W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations,” J. Opt. Soc. Am. B 26, 1532–1537 (2009).

[CrossRef]

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of nonclassicality,” J. Opt. B 6, 396–404 (2004).

[CrossRef]

S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011).

[CrossRef]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).

[CrossRef]

P. Marek, H. Jeong, and M. S. Kim, “Generating ‘squeezed’ superpositions of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811 (2008).

[CrossRef]

M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005).

[CrossRef]

A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005).

[CrossRef]

M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005).

[CrossRef]

M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997).

[CrossRef]

G. S. Kumar and V. C. Kuriakose, “Squeezed coherent states representation of scalar field and particle production in the early universe,” Int. J. Theor. Phys. 39, 351–361 (2000).

[CrossRef]

M. Selvadoray, M. S. Kumar, and R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994).

[CrossRef]

G. S. Kumar and V. C. Kuriakose, “Squeezed coherent states representation of scalar field and particle production in the early universe,” Int. J. Theor. Phys. 39, 351–361 (2000).

[CrossRef]

S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011).

[CrossRef]

S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010).

[CrossRef]

S. Y. Lee, J. Park, S. W. Ji, C. H. R. Ooi, and H. W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations,” J. Opt. Soc. Am. B 26, 1532–1537 (2009).

[CrossRef]

W. L. You, Y. W. Li, and S. J. Gu, “Fidelity, dynamic structure factor, and susceptibility in critical phenomena,” Phys. Rev. E 76, 022101 (2007).

[CrossRef]

H. Y. Fan and V. J. Linde, “Similarity transformations in one- and two-mode Fock space,” J. Phys. A 24, 2529–2538(1991).

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006).

[CrossRef]

A. Luis, “Squeezed coherent states as feasible approximations to phase-optimized states,” Phys. Lett. A 354, 71–78 (2006).

[CrossRef]

P. Marek, H. Jeong, and M. S. Kim, “Generating ‘squeezed’ superpositions of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811 (2008).

[CrossRef]

M. Matsuoka and T. Hirano, “Quantum key distribution with a single photon from a squeezed coherent state,” Phys. Rev. A 67, 042307 (2003).

[CrossRef]

S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011).

[CrossRef]

S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010).

[CrossRef]

J. Lee, J. Kim, and H. Nha, “Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes,” J. Opt. Soc. Am. B 26, 1363–1369 (2009).

[CrossRef]

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).

[CrossRef]

M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997).

[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).

[CrossRef]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).

[CrossRef]

M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005).

[CrossRef]

H. Paul, “Photon antibunching,” Rev. Mod. Phys. 54, 1061–1102 (1982).

[CrossRef]

D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003).

[CrossRef]

R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001).

A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005).

[CrossRef]

D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003).

[CrossRef]

W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

M. Selvadoray, M. S. Kumar, and R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994).

[CrossRef]

R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).

[CrossRef]

M. Selvadoray, M. S. Kumar, and R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994).

[CrossRef]

B. Dutta, N. Mukunda, R. Simon, and A. Subramaniam, “Squeezed states, photon-number distributions, and U(1) invariance,” J. Opt. Soc. Am. B 10, 253–264 (1993).

[CrossRef]

D. Stoler, “ Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).

[CrossRef]

A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005).

[CrossRef]

G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991).

[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).

[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004).

[CrossRef]

A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005).

[CrossRef]

M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997).

[CrossRef]

H. Y. Fan and M. Xiao, “A spacial type of squeezed coherent state,” Phys. Lett. A 220, 81–86 (1996).

[CrossRef]

S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011).

[CrossRef]

L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010).

[CrossRef]

W. L. You, Y. W. Li, and S. J. Gu, “Fidelity, dynamic structure factor, and susceptibility in critical phenomena,” Phys. Rev. E 76, 022101 (2007).

[CrossRef]

S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011).

[CrossRef]

Z. Wang, H. C. Yuan, and H. Y. Fan, “Nonclassicality of the photon addition-then subtraction coherent state and its decoherence in the photon-loss channel,” J. Opt. Soc. Am. B 28, 1964–1972 (2011).

[CrossRef]

B. Yurke, “Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors,” Phys. Rev. A 32, 300–310 (1985).

[CrossRef]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).

[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004).

[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of nonclassicality,” J. Opt. B 6, 396–404 (2004).

[CrossRef]

H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006).

[CrossRef]

H. Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics (IV)–Integrations within Weyl ordered product of operators and their application,” Ann. Phys. 323, 500–526 (2008).

[CrossRef]

G. S. Kumar and V. C. Kuriakose, “Squeezed coherent states representation of scalar field and particle production in the early universe,” Int. J. Theor. Phys. 39, 351–361 (2000).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment,” J. Mod. Opt. 57, 1344–1354 (2010).

[CrossRef]

A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of nonclassicality,” J. Opt. B 6, 396–404 (2004).

[CrossRef]

V. V. Dodonov, “Nonclassical states in quantum optics: a squeezed review of the first 75 years,” J. Opt. B 4, R1–R33 (2002).

[CrossRef]

S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011).

[CrossRef]

Y. Yang and F. L. Li, “Nonclassicality of photon-subtracted and photon-added-then-subtracted Gaussian states,” J. Opt. Soc. Am. B 26, 830–835 (2009).

[CrossRef]

J. Lee, J. Kim, and H. Nha, “Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes,” J. Opt. Soc. Am. B 26, 1363–1369 (2009).

[CrossRef]

S. Y. Lee, J. Park, S. W. Ji, C. H. R. Ooi, and H. W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations,” J. Opt. Soc. Am. B 26, 1532–1537 (2009).

[CrossRef]

K. Zhu, Q. Wang, and X. R. Li, “Nonclassical statistical properties of fields in squeezed even and squeezed odd coherent states,” J. Opt. Soc. Am. B 10, 1287–1291 (1993).

[CrossRef]

Z. Wang, H. C. Yuan, and H. Y. Fan, “Nonclassicality of the photon addition-then subtraction coherent state and its decoherence in the photon-loss channel,” J. Opt. Soc. Am. B 28, 1964–1972 (2011).

[CrossRef]

L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008).

[CrossRef]

L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010).

[CrossRef]

B. Dutta, N. Mukunda, R. Simon, and A. Subramaniam, “Squeezed states, photon-number distributions, and U(1) invariance,” J. Opt. Soc. Am. B 10, 253–264 (1993).

[CrossRef]

H. Y. Fan and V. J. Linde, “Similarity transformations in one- and two-mode Fock space,” J. Phys. A 24, 2529–2538(1991).

L. Y. Hu and H. Y. Fan, “Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process,” Opt. Commun. 282, 932–935 (2009).

[CrossRef]

H. Y. Fan and L. Y. Hu, “Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379–4383 (2009).

[CrossRef]

A. Luis, “Squeezed coherent states as feasible approximations to phase-optimized states,” Phys. Lett. A 354, 71–78 (2006).

[CrossRef]

H. Y. Fan and M. Xiao, “A spacial type of squeezed coherent state,” Phys. Lett. A 220, 81–86 (1996).

[CrossRef]

B. Yurke, “Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors,” Phys. Rev. A 32, 300–310 (1985).

[CrossRef]

M. Selvadoray, M. S. Kumar, and R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994).

[CrossRef]

M. Matsuoka and T. Hirano, “Quantum key distribution with a single photon from a squeezed coherent state,” Phys. Rev. A 67, 042307 (2003).

[CrossRef]

P. Marek, H. Jeong, and M. S. Kim, “Generating ‘squeezed’ superpositions of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811 (2008).

[CrossRef]

S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011).

[CrossRef]

G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991).

[CrossRef]

M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005).

[CrossRef]

A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007).

[CrossRef]

A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005).

[CrossRef]

D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003).

[CrossRef]

M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997).

[CrossRef]

H. Y. Fan, “Squeezed states: Operators for two types of one- and two-mode squeezing transformations,” Phys. Rev. A 41, 1526–1532 (1990).

S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010).

[CrossRef]

D. Stoler, “ Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).

[CrossRef]

W. L. You, Y. W. Li, and S. J. Gu, “Fidelity, dynamic structure factor, and susceptibility in critical phenomena,” Phys. Rev. E 76, 022101 (2007).

[CrossRef]

R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. 51, 384–387 (1983).

[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).

[CrossRef]

H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).

[CrossRef]

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

H. Paul, “Photon antibunching,” Rev. Mod. Phys. 54, 1061–1102 (1982).

[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004).

[CrossRef]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).

[CrossRef]

W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001).