Abstract

The original dense coding protocol is achieved via a quantum channel generated between a single Cooper pair and a cavity. The dynamics of the coded and decoded information is investigated for different values of the channel’s parameters. It is shown that these two types of information increase as the detuning parameter increases or the number of photons inside the cavity decreases. The coded and decoded information increases as the ratio of the capacities between the box and the gate decrease. The dynamics of information is investigated in the presence of imperfect operation during the coding process. It is found that, for the phase flip error, the upper bound of the coded and decoded information is much smaller than that depicted for the bit flip errors.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [Crossref]
  3. Q.-M. Song, B.-L. Fang, and L. Ye, “Deterministic quantum dense coding with cluster state in optical systems,” Opt. Commun. 284, 510–514 (2011).
    [Crossref]
  4. P. S. Bourdon and E. Gerjuoy, “Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state,” Phys. Rev. A 81, 022314 (2010).
    [Crossref]
  5. N. Metwally, “Dense coding and dynamics of information over Bloch channels,” J. Phys. A 44, 055305–055315 (2011).
    [Crossref]
  6. X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
    [Crossref]
  7. S. Quek, Z. Li, and Ye Yeo, “Effects of quantum noises and noisy quantum operations on entanglement and special dense coding,” Phys. Rev. A 81, 024302 (2010).
    [Crossref]
  8. A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
    [Crossref]
  9. A. D. Armourm, M. P. Blencowe, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
    [Crossref]
  10. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
    [Crossref]
  11. E. J. Pritchett and R. Geller, “Quantum memory for superconducting qubits,” Phys. Rev. A 72, 010301(R) (2005).
    [Crossref]
  12. I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003).
    [Crossref]
  13. N. Metwally and A. A. El-Amin, “Maximum entangled states and quantum teleportation via single Cooper pair box,” Physica E 41, 718–722 (2009).
    [Crossref]
  14. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
    [Crossref]
  15. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
    [Crossref]
  16. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsa, “Rabi oscillations in a Josephson-junction charge two-level system,” Phys. Rev. Lett. 87, 246601 (2001);
    [Crossref]
  17. I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
    [Crossref]
  18. J. S. Tsai and Y. Nakamura, “Superconducting single-Cooper-pair box quantum bit with multi-gate-pulse operation,” Physica C 367, 191–196 (2002).
    [Crossref]
  19. R. Migliore, A. Messina, and A. Napoli, “Detecting quantum signatures of optical fields by ultrasmall Josephson junctions,” Eur. Phys. J. B 13, 585–588 (2000).
  20. A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011).
    [Crossref]
  21. D. Rodrigues, B. Gyorffy, and T. Spiller, “Arrays of Cooper pair boxes coupled to a superconducting reservoir: ‘superradiance’ and ‘revival’,” J. Phys. Condens. Matter 16, 4477–4494(2004).
    [Crossref]
  22. Y. Makhlin, G. Schon, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001).
    [Crossref]
  23. J. You and F. Nori, “Cooper-pair-box qubits in a quantum electrodynamic cavity,” Physica E 18, 33–34(2003).
  24. A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
    [Crossref]
  25. C. Fuchs and A. Peres, “Quantum state disturbance vs. information gain: uncertainty relations for quantum information,” Phys. Rev. A 53, 2038–2045 (1996).
    [Crossref]
  26. L. Maccone, “Information-disturbance tradeoff in quantum measurements,” Phys. Rev. A 73, 042307 (2006).
    [Crossref]
  27. N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
    [Crossref]

2011 (3)

Q.-M. Song, B.-L. Fang, and L. Ye, “Deterministic quantum dense coding with cluster state in optical systems,” Opt. Commun. 284, 510–514 (2011).
[Crossref]

N. Metwally, “Dense coding and dynamics of information over Bloch channels,” J. Phys. A 44, 055305–055315 (2011).
[Crossref]

A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011).
[Crossref]

2010 (3)

P. S. Bourdon and E. Gerjuoy, “Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state,” Phys. Rev. A 81, 022314 (2010).
[Crossref]

S. Quek, Z. Li, and Ye Yeo, “Effects of quantum noises and noisy quantum operations on entanglement and special dense coding,” Phys. Rev. A 81, 024302 (2010).
[Crossref]

N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
[Crossref]

2009 (2)

X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
[Crossref]

N. Metwally and A. A. El-Amin, “Maximum entangled states and quantum teleportation via single Cooper pair box,” Physica E 41, 718–722 (2009).
[Crossref]

2007 (1)

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

2006 (1)

L. Maccone, “Information-disturbance tradeoff in quantum measurements,” Phys. Rev. A 73, 042307 (2006).
[Crossref]

2005 (2)

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

E. J. Pritchett and R. Geller, “Quantum memory for superconducting qubits,” Phys. Rev. A 72, 010301(R) (2005).
[Crossref]

2004 (3)

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[Crossref]

D. Rodrigues, B. Gyorffy, and T. Spiller, “Arrays of Cooper pair boxes coupled to a superconducting reservoir: ‘superradiance’ and ‘revival’,” J. Phys. Condens. Matter 16, 4477–4494(2004).
[Crossref]

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

2003 (2)

I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003).
[Crossref]

J. You and F. Nori, “Cooper-pair-box qubits in a quantum electrodynamic cavity,” Physica E 18, 33–34(2003).

2002 (2)

A. D. Armourm, M. P. Blencowe, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]

J. S. Tsai and Y. Nakamura, “Superconducting single-Cooper-pair box quantum bit with multi-gate-pulse operation,” Physica C 367, 191–196 (2002).
[Crossref]

2001 (2)

Y. Makhlin, G. Schon, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001).
[Crossref]

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsa, “Rabi oscillations in a Josephson-junction charge two-level system,” Phys. Rev. Lett. 87, 246601 (2001);
[Crossref]

2000 (1)

R. Migliore, A. Messina, and A. Napoli, “Detecting quantum signatures of optical fields by ultrasmall Josephson junctions,” Eur. Phys. J. B 13, 585–588 (2000).

1999 (1)

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]

1998 (1)

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
[Crossref]

1996 (1)

C. Fuchs and A. Peres, “Quantum state disturbance vs. information gain: uncertainty relations for quantum information,” Phys. Rev. A 53, 2038–2045 (1996).
[Crossref]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

Abdel-Aty, M.

A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011).
[Crossref]

Abo-Kahla, D. A. M.

A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011).
[Crossref]

Armourm, A. D.

A. D. Armourm, M. P. Blencowe, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]

Bennett, C. H.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

Beret, P.

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

Blais, A.

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[Crossref]

Blencowe, M. P.

A. D. Armourm, M. P. Blencowe, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]

Bouchiat, V.

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
[Crossref]

Bourdon, P. S.

P. S. Bourdon and E. Gerjuoy, “Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state,” Phys. Rev. A 81, 022314 (2010).
[Crossref]

Chiorescu, I.

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Deng, F.-G.

X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
[Crossref]

Devoret, M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
[Crossref]

Devoret, M. H.

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

El-Amin, A. A.

N. Metwally and A. A. El-Amin, “Maximum entangled states and quantum teleportation via single Cooper pair box,” Physica E 41, 718–722 (2009).
[Crossref]

Esteve, D.

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
[Crossref]

Fang, B.-L.

Q.-M. Song, B.-L. Fang, and L. Ye, “Deterministic quantum dense coding with cluster state in optical systems,” Opt. Commun. 284, 510–514 (2011).
[Crossref]

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

Fuchs, C.

C. Fuchs and A. Peres, “Quantum state disturbance vs. information gain: uncertainty relations for quantum information,” Phys. Rev. A 53, 2038–2045 (1996).
[Crossref]

Gambetta, J.

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

Geller, R.

E. J. Pritchett and R. Geller, “Quantum memory for superconducting qubits,” Phys. Rev. A 72, 010301(R) (2005).
[Crossref]

Gerjuoy, E.

P. S. Bourdon and E. Gerjuoy, “Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state,” Phys. Rev. A 81, 022314 (2010).
[Crossref]

Girvin, S. M.

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[Crossref]

Gyorffy, B.

D. Rodrigues, B. Gyorffy, and T. Spiller, “Arrays of Cooper pair boxes coupled to a superconducting reservoir: ‘superradiance’ and ‘revival’,” J. Phys. Condens. Matter 16, 4477–4494(2004).
[Crossref]

Harmans, C.

I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003).
[Crossref]

Harmans, C. J. P. M.

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

Huang, R.-S.

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[Crossref]

Joyez, P.

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
[Crossref]

Li, X.-H.

X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
[Crossref]

Li, Z.

S. Quek, Z. Li, and Ye Yeo, “Effects of quantum noises and noisy quantum operations on entanglement and special dense coding,” Phys. Rev. A 81, 024302 (2010).
[Crossref]

Maccone, L.

L. Maccone, “Information-disturbance tradeoff in quantum measurements,” Phys. Rev. A 73, 042307 (2006).
[Crossref]

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

Makhlin, Y.

Y. Makhlin, G. Schon, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001).
[Crossref]

Messina, A.

R. Migliore, A. Messina, and A. Napoli, “Detecting quantum signatures of optical fields by ultrasmall Josephson junctions,” Eur. Phys. J. B 13, 585–588 (2000).

Metwally, N.

A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011).
[Crossref]

N. Metwally, “Dense coding and dynamics of information over Bloch channels,” J. Phys. A 44, 055305–055315 (2011).
[Crossref]

N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
[Crossref]

N. Metwally and A. A. El-Amin, “Maximum entangled states and quantum teleportation via single Cooper pair box,” Physica E 41, 718–722 (2009).
[Crossref]

Migliore, R.

R. Migliore, A. Messina, and A. Napoli, “Detecting quantum signatures of optical fields by ultrasmall Josephson junctions,” Eur. Phys. J. B 13, 585–588 (2000).

Moiji, J. E.

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

Mooij, J.

I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003).
[Crossref]

Nakamura, Y.

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003).
[Crossref]

J. S. Tsai and Y. Nakamura, “Superconducting single-Cooper-pair box quantum bit with multi-gate-pulse operation,” Physica C 367, 191–196 (2002).
[Crossref]

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsa, “Rabi oscillations in a Josephson-junction charge two-level system,” Phys. Rev. Lett. 87, 246601 (2001);
[Crossref]

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]

Napoli, A.

R. Migliore, A. Messina, and A. Napoli, “Detecting quantum signatures of optical fields by ultrasmall Josephson junctions,” Eur. Phys. J. B 13, 585–588 (2000).

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Nori, F.

J. You and F. Nori, “Cooper-pair-box qubits in a quantum electrodynamic cavity,” Physica E 18, 33–34(2003).

Obada, A.-S. F.

A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011).
[Crossref]

Pashkin, Yu. A.

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsa, “Rabi oscillations in a Josephson-junction charge two-level system,” Phys. Rev. Lett. 87, 246601 (2001);
[Crossref]

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]

Peres, A.

C. Fuchs and A. Peres, “Quantum state disturbance vs. information gain: uncertainty relations for quantum information,” Phys. Rev. A 53, 2038–2045 (1996).
[Crossref]

Pritchett, E. J.

E. J. Pritchett and R. Geller, “Quantum memory for superconducting qubits,” Phys. Rev. A 72, 010301(R) (2005).
[Crossref]

Quek, S.

S. Quek, Z. Li, and Ye Yeo, “Effects of quantum noises and noisy quantum operations on entanglement and special dense coding,” Phys. Rev. A 81, 024302 (2010).
[Crossref]

Rodrigues, D.

D. Rodrigues, B. Gyorffy, and T. Spiller, “Arrays of Cooper pair boxes coupled to a superconducting reservoir: ‘superradiance’ and ‘revival’,” J. Phys. Condens. Matter 16, 4477–4494(2004).
[Crossref]

Schocelkopf, R. J.

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[Crossref]

Schoelkopf, R. J.

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

Schon, G.

Y. Makhlin, G. Schon, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001).
[Crossref]

Schuster, D. I.

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

Schwab, K. C.

A. D. Armourm, M. P. Blencowe, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]

Semba, K.

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

Sheng, Y.-B.

X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
[Crossref]

Shnirman, A.

Y. Makhlin, G. Schon, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001).
[Crossref]

Song, Q.-M.

Q.-M. Song, B.-L. Fang, and L. Ye, “Deterministic quantum dense coding with cluster state in optical systems,” Opt. Commun. 284, 510–514 (2011).
[Crossref]

Spiller, T.

D. Rodrigues, B. Gyorffy, and T. Spiller, “Arrays of Cooper pair boxes coupled to a superconducting reservoir: ‘superradiance’ and ‘revival’,” J. Phys. Condens. Matter 16, 4477–4494(2004).
[Crossref]

Tsa, J. S.

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsa, “Rabi oscillations in a Josephson-junction charge two-level system,” Phys. Rev. Lett. 87, 246601 (2001);
[Crossref]

Tsai, J. S.

J. S. Tsai and Y. Nakamura, “Superconducting single-Cooper-pair box quantum bit with multi-gate-pulse operation,” Physica C 367, 191–196 (2002).
[Crossref]

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]

Vion, D.

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
[Crossref]

Wallraff, A.

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[Crossref]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

Ye, L.

Q.-M. Song, B.-L. Fang, and L. Ye, “Deterministic quantum dense coding with cluster state in optical systems,” Opt. Commun. 284, 510–514 (2011).
[Crossref]

Yeo, Ye

S. Quek, Z. Li, and Ye Yeo, “Effects of quantum noises and noisy quantum operations on entanglement and special dense coding,” Phys. Rev. A 81, 024302 (2010).
[Crossref]

You, J.

J. You and F. Nori, “Cooper-pair-box qubits in a quantum electrodynamic cavity,” Physica E 18, 33–34(2003).

Zhao, B.-K.

X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
[Crossref]

Zhou, H.-Y.

X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
[Crossref]

Eur. Phys. J. B (1)

R. Migliore, A. Messina, and A. Napoli, “Detecting quantum signatures of optical fields by ultrasmall Josephson junctions,” Eur. Phys. J. B 13, 585–588 (2000).

Int. J. Quantum. Inform. (1)

X.-H. Li, B.-K. Zhao, Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009).
[Crossref]

Int. J. Theor. Phys. (1)

N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
[Crossref]

J. Phys. A (1)

N. Metwally, “Dense coding and dynamics of information over Bloch channels,” J. Phys. A 44, 055305–055315 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

D. Rodrigues, B. Gyorffy, and T. Spiller, “Arrays of Cooper pair boxes coupled to a superconducting reservoir: ‘superradiance’ and ‘revival’,” J. Phys. Condens. Matter 16, 4477–4494(2004).
[Crossref]

Nature (2)

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]

I. Chiorescu, P. Beret, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Moiji, “Coherent dynamics of a flux qubit coupled to a harmonic oscillator,” Nature 431, 159–162(2004).
[Crossref]

Opt. Commun. (1)

Q.-M. Song, B.-L. Fang, and L. Ye, “Deterministic quantum dense coding with cluster state in optical systems,” Opt. Commun. 284, 510–514 (2011).
[Crossref]

Phys. Rev. A (7)

P. S. Bourdon and E. Gerjuoy, “Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state,” Phys. Rev. A 81, 022314 (2010).
[Crossref]

S. Quek, Z. Li, and Ye Yeo, “Effects of quantum noises and noisy quantum operations on entanglement and special dense coding,” Phys. Rev. A 81, 024302 (2010).
[Crossref]

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schocelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[Crossref]

E. J. Pritchett and R. Geller, “Quantum memory for superconducting qubits,” Phys. Rev. A 72, 010301(R) (2005).
[Crossref]

A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,” Phys. Rev. A 75, 032329 (2007).
[Crossref]

C. Fuchs and A. Peres, “Quantum state disturbance vs. information gain: uncertainty relations for quantum information,” Phys. Rev. A 53, 2038–2045 (1996).
[Crossref]

L. Maccone, “Information-disturbance tradeoff in quantum measurements,” Phys. Rev. A 73, 042307 (2006).
[Crossref]

Phys. Rev. Lett. (4)

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsa, “Rabi oscillations in a Josephson-junction charge two-level system,” Phys. Rev. Lett. 87, 246601 (2001);
[Crossref]

A. D. Armourm, M. P. Blencowe, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Approaching unit visibility for control of a superconducting qubit with dispersive readout,” Phys. Rev. Lett. 95, 060501 (2005).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

Phys. Scr. (1)

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum coherence with a single Cooper pair,” Phys. Scr. 1998, 165–170 (1998).
[Crossref]

Physica C (1)

J. S. Tsai and Y. Nakamura, “Superconducting single-Cooper-pair box quantum bit with multi-gate-pulse operation,” Physica C 367, 191–196 (2002).
[Crossref]

Physica E (3)

N. Metwally and A. A. El-Amin, “Maximum entangled states and quantum teleportation via single Cooper pair box,” Physica E 41, 718–722 (2009).
[Crossref]

J. You and F. Nori, “Cooper-pair-box qubits in a quantum electrodynamic cavity,” Physica E 18, 33–34(2003).

A.-S. F. Obada, D. A. M. Abo-Kahla, N. Metwally, and M. Abdel-Aty, “The quantum computational speed of a single Cooper-pair box,” Physica E 43, 1792–1797 (2011).
[Crossref]

Rev. Mod. Phys. (1)

Y. Makhlin, G. Schon, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001).
[Crossref]

Science (1)

I. Chiorescu, Y. Nakamura, C. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science 299, 1869–1871 (2003).
[Crossref]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Dynamics of the information in the presence of perfect local operations where n=2, the ratio κ=CjCg+CJ=12, and Δ=0,0.5,1 for the dotted, solid, and dashed–dotted curves, respectively: (a) coded information Ic; (b) decoded information Id.

Fig. 2.
Fig. 2.

Same as Fig. 1, but n=1,5, and 10 for the dotted, solid, and dashed–dotted curves, respectively, and Δ=1.

Fig. 3.
Fig. 3.

Same as Fig. 1, but the ratio, κ=1/2,1/3, and 1/4 for the dotted, solid, and dashed–dotted curves, respectively, with Δ=0.5 and n=2.

Fig. 4.
Fig. 4.

Same as Fig. 1, but the system is initially prepared in the state ψs(0)=|n,g.

Fig. 5.
Fig. 5.

Same as Fig. 1, but Alice performs the bit flip operation with a probability q=0.1 and fails with probability 1q=0.9 (first type of imperfect operation).

Fig. 6.
Fig. 6.

The same as Fig. 5, but for different values of the number of photons inside the cavity. The dotted, solid, and dashed–dotted curves n=1,5,10, respectively.

Fig. 7.
Fig. 7.

Same as Fig. 1, but the Alice applies the phase flip operation instead of the bit flip operation (second type of imperfect operation).

Fig. 8.
Fig. 8.

Same as Fig. 2, but Alice applies phase flip operation instead of the bit flip operation (second type of imperfect operation).

Fig. 9.
Fig. 9.

(a) and (b) represent the disturbance when the user applies the first type of imperfect operations, while (c) and (d) show the same for the second type of imperfect operations. In (a) and (c), the dotted, solid and dashed–dotted curves show Δ=0,0.5, and 1, respectively, while those in (b) and (d) show n=1,5, and 10, respectively.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Hc=4Ec(nng)2Ejcosϕ,
Ec=2e2(Cj+Cg)
Ej=12eIc
ng=12VgCge
Hc=12Bzσz12Bxσx,
H=ϖaa+ϖcσzλ{μνσz+1ν2σx}(a+a),
λ=CjCg+CJ12ϖe2
θ=arctan(1EcEj2ng1)
HI=12Δσziλ(aσ+aσ),
|ψs(t)=U(t)|ψs(0),
U(t)=(U11(t)U12(t)U21(t)U22(t)),
U11(t)=cosγn+1tiΔ2sinγn+1tγn+1,U12(t)=λasinγntγn,U21(t)=gλasinγn+1tΩn+1,U22(t)=cosγnt+iΔ2sinγntΩn.
|ψs(t)=c1|n,e+c2|n1,e+c3|n,g+c4|n+1,g,
c1=cosγn+1τiδγn+1sinγn+1τ,c2=iδγn+1n1sinγn+1τ,c3=cosμnτ+iδμnsinμnτ,c4=iδγn+1n+1sinγn+1τ,
|ψs(t)=c1|n,e+c4|n+1,g,
ρc=i=03{piσ1iI2ρs(t)σ1iI2},
ρs(t)=|c1|2|e,ne,n|+c1c4*|e,ng,n+1|+c4c1*|g,n+1n,e|+|c42||g,n+1g,n+1|
Ic=|c1|2log2|c1|2|c4|2log2|c4|2,
Id=S(j=0j=3pjρ(t))j=0j=3piS(ρ(t)),
ρs(t)=|c2|2|n1,en1,e|+c2c3*|n1n,g|+c3c2*|n,gn1,e|+|c3|2|n,gn,g|,
ρc=q4σ1xρs(t)σ1x+1q4ρs(t)+14i=02{σ1iI2ρs(t)σ1iI2},
ρc=12σ1zI2ρs(t)σ1zI2+14i=01{σ1iI2ρs(t)σ1iI2},
Ic=34[|c1|2log23|c1|24+|c4|2log23|c4|24+|c1|2+|c4|23log2|c1|2+|c4|24].
D=1F,

Metrics