Abstract

In a three-photon spatial correlation measurement in which we scan two of three detectors in opposite directions, we observed the enhancement of both the resolution and the contrast of the third-order spatial correlation function of chaotic thermal light in the single photon counting regime. The effect can be understood as the resolution and contrast enhancement of the point-to-point correlation function that connects the imaging plane and the object plane.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [CrossRef]
  2. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef]
  3. G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
    [CrossRef]
  4. Y. H. Shih, “The physics of ghost imaging,” http://arxiv.org/abs/0805.1166 .
  5. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).
  6. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [CrossRef]
  7. M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
    [CrossRef]
  8. R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
    [CrossRef]
  9. R. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
    [CrossRef]
  10. Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
    [CrossRef]
  11. I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury-Brown and Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
    [CrossRef]
  12. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
    [CrossRef]
  13. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
    [CrossRef]
  14. X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
    [CrossRef]
  15. J. B. Liu and Y. H. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
    [CrossRef]
  16. Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
    [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).
  18. P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222 (2009).
    [CrossRef]
  19. Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
    [CrossRef]

2011 (1)

R. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[CrossRef]

2010 (2)

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

2009 (4)

J. B. Liu and Y. H. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[CrossRef]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
[CrossRef]

P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222 (2009).
[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
[CrossRef]

2008 (3)

I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury-Brown and Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

2007 (2)

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

2006 (1)

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

2005 (2)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Agafonov, I. N.

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury-Brown and Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Bai, Y. F.

Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).

Boyd, R. W.

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Cao, D. Z.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Chan, K. W. C.

Chekhova, M. V.

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury-Brown and Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Chen, X. H.

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
[CrossRef]

Cheng, J.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Deacon, K. S.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[CrossRef]

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Gong, W. L.

Han, S. S.

P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222 (2009).
[CrossRef]

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

Huang, D. J.

Iskhakov, T. Sh.

I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury-Brown and Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Klyshko, D. N.

D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).

Lin, L. F.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Liu, H. L.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Liu, J. B.

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

J. B. Liu and Y. H. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[CrossRef]

Liu, Q.

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
[CrossRef]

Liu, Y. F.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Luo, K. H.

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
[CrossRef]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Meyers, R.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[CrossRef]

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

O’Sullivan, M. N.

Penin, A. N.

I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury-Brown and Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Shen, X.

P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222 (2009).
[CrossRef]

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Shih, Y. H.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[CrossRef]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

J. B. Liu and Y. H. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[CrossRef]

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Simon, J.

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Wang, K. G.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Wei, Q.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).

Wu, L. A.

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
[CrossRef]

Wu, W.

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
[CrossRef]

Xian, R.

Xiong, J.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Zhang, M. H.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

Zhang, P. L.

Zhang, S. H.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Zhou, Y.

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

R. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[CrossRef]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (8)

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009).
[CrossRef]

J. B. Liu and Y. H. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[CrossRef]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010).
[CrossRef]

Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[CrossRef]

I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury-Brown and Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008).
[CrossRef]

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007).
[CrossRef]

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Phys. Rev. Lett. (3)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).

Y. H. Shih, “The physics of ghost imaging,” http://arxiv.org/abs/0805.1166 .

D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the third-order ghost imaging in [16].

Fig. 2.
Fig. 2.

(a) In a classical imaging system, the image is in intensity distribution. Its point-to-spot correlation function connecting the object plane and the image plane comes from the constructive–destructive interference of electromagnetic waves. Its resolution is determined by the finite aperture of the optical elements. (b) In a third-order ghost imaging system, the image is in the distribution of third-order correlation strength. Its point-to-spot correlation function comes from the quantum interference of different yet indistinguishable probability amplitudes.

Fig. 3.
Fig. 3.

Comparison of three ghost imaging experiments. In all experiments, detector D3 is fixed and functions as a point object. (a) Unfolded version of the second-order ghost imaging experiment. Its point-to-spot correlation function is determined by Eq. (3). (b) Unfolded version of the third-order ghost imaging experiment when detectors D1 and D2 move together. Its point-to-spot correlation function is determined by Eq. (2). (c) Unfolded version of the third-order ghost imaging experiment when detectors D1 and D2 move in opposite directions. Its point-to-spot correlation function is determined by Eq. (4).

Fig. 4.
Fig. 4.

Top view of the histogram of the third-order spatial correlation function. When the two detectors move together, it is equivalent to measure the correlation function along the direction denoted by red arrows (in the top-right to bottom-left diagonal). When the two detectors move in opposite direction, it is equivalent to measure the correlation function along the direction denoted by green arrows (in the top-left to bottom-right diagonal).

Fig. 5.
Fig. 5.

Red (maximum value 6; minimum value 1), blue (maximum value 6; minimum value 2), and black (maximum value 2; minimum value 1) peaks are from Eq. (4), Eq. (2), and Eq. (3), respectively. The FWHM of blue (the third-order, two scanning detectors move together) and black (the second-order) correlation peaks are the same, which explains why we did not observe resolution enhancement effect in [16]. The FWHM of the red (the third-order, two scanning detectors move in opposite directions) correlation peak is 68% of that of the other two correlation peaks, which means the higher resolution.

Fig. 6.
Fig. 6.

Schematic of the resolution enhancement experiment. Fiber tip t3 is fixed and functions as an object. There are two ways for scanning: (a) detectors D1 and D2 scan together, or (b) detectors D1 and D2 scan in opposite direction.

Fig. 7.
Fig. 7.

Blue circles stand for the data we recorded when we scan detectors D1 and D2 together; the red squares stand for the data we record when we scan two detectors in opposite directions. The blue solid curve is the fitting curve for the data when we scan detectors D1 and D2 together, and its FWHM is 0.9mm. The red solid curve is the fitting curve for the data when we scan detectors D1 and D2 in opposite directions, and its FWHM is 0.69mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g(3)(x1,x2,x3)=1+sinc2[πΔθλ(x1x2)]+sinc2[πΔθλ(x2x3)]+sinc2[πΔθλ(x3x1)]+2sinc[πΔθλ(x1x2)]sinc[πΔθλ(x2x3)]sinc[πΔθλ(x3x1)],
g(3)(x1,x3)=2+4sinc2[πΔθλ(x1x3)].
g(2)(x1,x3)=1+sinc2[πΔθλ(x1x3)].
g(3)(x1,x3)=1+sinc2[2πΔθλ(x1x3)]+2sinc2[πΔθλ(x1x3)]+2sinc[2πΔθλ(x1x3)]sinc2[πΔθλ(x1x3)].

Metrics