Abstract

The periodic bullet-like and cone-like submicron grating (SMG) structures on germanium (Ge) substrates were fabricated by dry etching processes via laser interference lithography. Their optical reflectance characteristics as well as the wettability of the surface were investigated. The wide cone-like Ge SMG structure exhibited a lower reflectance than that of the narrow bullet-like Ge SMG structure at wavelengths of 300–1100 nm due to its relatively high volume fraction and the more linearly graded effective refractive index distribution between air and the Ge substrate. As the period of cone-like Ge SMGs was increased, the low reflectance band of <10% was shifted toward the longer-wavelength region and its minimum value became slightly higher. The fabricated Ge SMG structures showed a hydrophobic surface property with contact angles of 90.7–102.5°. For theoretical analysis, the reflectance calculations were also performed by a rigorous coupled-wave analysis simulation, which indicated a similar trend to the experimental results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
    [CrossRef]
  2. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
    [CrossRef]
  3. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
    [CrossRef]
  4. J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011).
  5. J. Le Perchec, R. Espiau de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
    [CrossRef]
  6. A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
    [CrossRef]
  7. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
    [CrossRef]
  8. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
    [CrossRef]
  9. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
    [CrossRef]
  10. J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221–2227 (2011).
    [CrossRef]
  11. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006).
    [CrossRef]
  12. Y. Xu, H. B. Sun, J. Y. Ye, S. Matsuo, and H. Misawa, “Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips,” J. Opt. Soc. Am. B 18, 1084–1091 (2001).
    [CrossRef]
  13. F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
    [CrossRef]
  14. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
    [CrossRef]
  15. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett. 26, 1642–1644 (2001).
    [CrossRef]
  16. R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
    [CrossRef]
  17. S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
    [CrossRef]
  18. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
    [CrossRef]
  19. N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
    [CrossRef]
  20. J. M. Kontio, J. Simonen, K. Leinonen, M. Kuittinen, and T. Niemi, “Broadband infrared mirror using guided-mode resonance in a subwavelength germanium grating,” Opt. Lett. 35, 2564–2566 (2010).
    [CrossRef]
  21. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
    [CrossRef]
  22. Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91, 162102 (2007).
    [CrossRef]
  23. S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
    [CrossRef]
  24. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
    [CrossRef]
  25. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19, A1155–A1164 (2011).
    [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  27. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19, 297–305 (2011).
    [CrossRef]
  28. SOPRA, http://www.sopra-sa.com , accessed 30Aug.2011.
  29. T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
    [CrossRef]
  30. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
    [CrossRef]
  31. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244, 281–282 (1973).
    [CrossRef]
  32. S. A. Kemme, S. H. Zaidi, and J. M. Gee, “Submicron diffractive gratings for thin film solar cell applications,” presented at the Ninth Workshop on Crystalline-Silicon Materials and Processes, Breckenridge, CO, Aug.1999.
  33. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  34. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
    [CrossRef]
  35. S. A. Boden and D. M. Bagnall, “Tunable reflectance minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
    [CrossRef]

2011 (7)

J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011).

J. Le Perchec, R. Espiau de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221–2227 (2011).
[CrossRef]

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
[CrossRef]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19, 297–305 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19, A1155–A1164 (2011).
[CrossRef]

2010 (7)

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

J. M. Kontio, J. Simonen, K. Leinonen, M. Kuittinen, and T. Niemi, “Broadband infrared mirror using guided-mode resonance in a subwavelength germanium grating,” Opt. Lett. 35, 2564–2566 (2010).
[CrossRef]

2009 (4)

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
[CrossRef]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

2008 (3)

S. A. Boden and D. M. Bagnall, “Tunable reflectance minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

2007 (3)

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91, 162102 (2007).
[CrossRef]

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

2006 (2)

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006).
[CrossRef]

2003 (1)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
[CrossRef]

2001 (2)

1995 (1)

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

1981 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244, 281–282 (1973).
[CrossRef]

Ahn, Y. H.

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91, 162102 (2007).
[CrossRef]

Algra, R. E.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Andreev, V. M.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006).
[CrossRef]

Badano, G.

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflectance minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Bakkers, E. P. A. M.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Bardou, N.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Bartenlian, B.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Bett, A. W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflectance minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Brenzikofer, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Brett, M. J.

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

Brun, M.

Cambril, E.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Carcenac, F.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Chappert, C.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Cheng, S. L.

Choi, E. S.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

Choi, H. J.

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244, 281–282 (1973).
[CrossRef]

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Das, S.

S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
[CrossRef]

Decanini, D.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Dhar, A.

S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
[CrossRef]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Dimroth, F.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Dommann, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Espiau de Lamaestre, R.

Evstropov, V. V.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006).
[CrossRef]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
[CrossRef]

Gaylord, T. K.

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
[CrossRef]

Gee, J. M.

S. A. Kemme, S. H. Zaidi, and J. M. Gee, “Submicron diffractive gratings for thin film solar cell applications,” presented at the Ninth Workshop on Crystalline-Silicon Materials and Processes, Breckenridge, CO, Aug.1999.

Gravrand, O.

Gudovskikh, A. S.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Guter, W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Hartsuiker, A.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Hazart, J.

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244, 281–282 (1973).
[CrossRef]

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Isella, G.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Jang, J. S.

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

Jeong, T. S.

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

Joo, D. H.

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221–2227 (2011).
[CrossRef]

Kalyuzhnyy, N. A.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Kang, S.

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

Kaufmann, R.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Kemme, S. A.

S. A. Kemme, S. H. Zaidi, and J. M. Gee, “Submicron diffractive gratings for thin film solar cell applications,” presented at the Ninth Workshop on Crystalline-Silicon Materials and Processes, Breckenridge, CO, Aug.1999.

Kikuta, H.

Kil, Y. H.

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

Kim, J. K.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Kim, T. S.

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

Kintaka, K.

Ko, Y. H.

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Kontio, J. M.

Kuittinen, M.

Lantratov, V. M.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Le Perchec, J.

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Lee, Y. T.

J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011).

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

Leem, J. W.

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221–2227 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19, A1155–A1164 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Leinonen, K.

Lu, J.

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Manna, S.

S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
[CrossRef]

Matsuo, S.

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Mintairov, S. A.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Misawa, H.

Mizutani, A.

Moharam, M. G.

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Nakano, H.

Neels, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Neukom, S.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Neumann, L.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Nicoletti, S.

Niemi, T.

Nishi, Y.

Nishii, J.

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Oliva, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006).
[CrossRef]

Park, C. Y.

J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011).

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

Park, G. C.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

Park, J.

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91, 162102 (2007).
[CrossRef]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Philipps, S. P.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Ravet, M. F.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Ray, S. K.

S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
[CrossRef]

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Rochat, N.

Rousseaux, F.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Sanchez-Amores, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Saraswat, K.

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Schöne, J.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Schubert, E. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Schubert, M. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Shambat, G.

Shim, K. H.

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

Shvarts, M. Z.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Siefer, G.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Simonen, J.

Singha, R. K.

S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
[CrossRef]

Sit, J. C.

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

Song, Y. M.

J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011).

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19, A1155–A1164 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006).
[CrossRef]

Steele, J. J.

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

Steiner, M.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Sun, H. B.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Timoshina, N. K.

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Tsoi, S.

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

Urban, C.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

van Popta, A. C.

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Veillet, P.

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Veinot, J. G. C.

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

von Känel, H.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Vuckovic, J.

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Wekkeli, A.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Welser, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
[CrossRef]

Xi, J. Q.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Xu, Y.

Yang, H. Y.

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

Ye, J. Y.

Yeo, C. I.

Yu, H. Y.

Yu, J. S.

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19, A1155–A1164 (2011).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221–2227 (2011).
[CrossRef]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19, 297–305 (2011).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
[CrossRef]

Zaidi, S. H.

S. A. Kemme, S. H. Zaidi, and J. M. Gee, “Submicron diffractive gratings for thin film solar cell applications,” presented at the Ninth Workshop on Crystalline-Silicon Materials and Processes, Breckenridge, CO, Aug.1999.

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

A. C. van Popta, J. J. Steele, S. Tsoi, J. G. C. Veinot, M. J. Brett, and J. C. Sit, “Porous nanostructured optical filters rendered insensitive to humidity by vapor-phase functionalization,” Adv. Funct. Mater. 16, 1331–1336 (2006).
[CrossRef]

Adv. Mater. (1)

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coating based on semiconductor nanorods,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Appl. Phys. B (1)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94, 223504 (2009).
[CrossRef]

Y. H. Ahn and J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91, 162102 (2007).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110(2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflectance minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

J. Appl. Phys. (1)

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110, 023107 (2011).
[CrossRef]

J. Korean Phys. Soc. (1)

T. S. Kim, H. Y. Yang, Y. H. Kil, T. S. Jeong, S. Kang, and K. H. Shim, “Dry etching of germanium by using inductively coupled CF4 plasma,” J. Korean Phys. Soc. 54, 2290–2296 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (2)

F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787–2791 (1995).
[CrossRef]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003).
[CrossRef]

Nano Lett. (2)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Nanoscale Res. Lett. (1)

S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett. 6, 224 (2011).
[CrossRef]

Nat. Photon. (1)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244, 281–282 (1973).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. R. Soc. B (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661–667 (2006).
[CrossRef]

Semiconductors (1)

N. A. Kalyuzhnyy, A. S. Gudovskikh, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, N. K. Timoshina, M. Z. Shvarts, and V. M. Andreev, “Germanium subcells for multi-junction GaInP/GaInAs/Ge solar cells,” Semiconductors 44, 1520–1528 (2010).
[CrossRef]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221–2227 (2011).
[CrossRef]

Other (3)

SOPRA, http://www.sopra-sa.com , accessed 30Aug.2011.

S. A. Kemme, S. H. Zaidi, and J. M. Gee, “Submicron diffractive gratings for thin film solar cell applications,” presented at the Ninth Workshop on Crystalline-Silicon Materials and Processes, Breckenridge, CO, Aug.1999.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the process steps for the fabrication of the periodic Ge SMG structures with different shapes. The SEM image of the periodic PR nanopatterns with a 2D hexagonal structure is also shown.

Fig. 2.
Fig. 2.

SEM images and calculated effective refractive index profiles of the fabricated (i) narrow bullet-like and (ii) wide cone-like Ge SMG structures with a period of 510 nm.

Fig. 3.
Fig. 3.

(a) Measured reflectance spectra of the fabricated (i) narrow bullet-like and (ii) wide cone-like Ge SMG structures with a period of 510 nm. (b) Contour plot of the variation of calculated reflectance spectra of the cone-like Ge SMGs as a function of R bdp .

Fig. 4.
Fig. 4.

Photographs (left) of (i) Ge substrate and (ii) narrow bullet-like and (iii) wide cone-like Ge SMG structures with a period of 510 nm and the lower-magnification SEM image (right) of (iii).

Fig. 5.
Fig. 5.

(a) 30° tilted oblique-view SEM images and (b) measured reflectance spectra of the cone-like Ge SMG structures for different periods of 380, 510, 630, and 750 nm. (c) Contour plot of the variation of calculated reflectance spectra of the cone-like Ge SMG structure for the simulation model with a R bdp value of 0.6 as used in Fig. 3(b) as a function of the period of SMGs.

Fig. 6.
Fig. 6.

Photographs of water droplets on the surface of (i) the Ge substrate, (ii) the narrow bullet-like Ge SMG structure with a period of 510 nm, and the cone-like Ge SMG structures with different periods of (iii) 380 nm, (iv) 510 nm, (v) 630 nm, and (vi) 750 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = R SMG + ( H SMG z ) 1 / O T and x 2 + y 2 = r 2 ( 0 z H SMG ) ,

Metrics