Abstract

Pulsed laser-induced breakdown at the titanium–water interface leads to the formation of titanium–water plasma, which evokes high-pressure and high-temperature (HPHT) conditions at the interfacial region and under suitable condition results in the formation of TiO2 nanoparticles. Laser-induced HPHT conditions at the titanium–water interface are characterized using the beam deflection setup and laser-induced breakdown spectroscopy, respectively. An estimate of HPHT at the interface is used to gain insight into the nucleation process of TiO2 nanoparticles. Assuming the existence of the thermodynamical equilibrium between the titanium and water plasma, the pressure and temperature at the interface are employed to measure the nucleation time, growth velocity, and the size of the nanoparticles for comparison with the synthesized nanoparticles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
    [CrossRef]
  2. X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007).
    [CrossRef]
  3. J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
    [CrossRef]
  4. Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
    [CrossRef]
  5. F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008).
    [CrossRef]
  6. R. M. Tilaki, A. Iraji Zad, and S. M. Mahdavi, “Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media,” Appl. Phys. A 84, 215–219(2006).
    [CrossRef]
  7. Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006).
    [CrossRef]
  8. J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
    [CrossRef]
  9. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, “Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses,” Opt. Express 17, 12650–12659 (2009).
    [CrossRef]
  10. T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001).
    [CrossRef]
  11. C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005).
    [CrossRef]
  12. A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
    [CrossRef]
  13. C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
    [CrossRef]
  14. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
    [CrossRef]
  15. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
    [CrossRef]
  16. J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
  17. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  18. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27, 3661–3668 (1988).
    [CrossRef]
  19. P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
    [CrossRef]
  20. A. Nath and A. Khare, “Effect of focusing conditions on laser-induced shock waves at titanium–water interface,” Appl. Opt. 50, 3275–3281 (2011).
    [CrossRef]
  21. M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–930 (1957).
    [CrossRef]
  22. S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta. B 58, 249–257 (2003).
    [CrossRef]
  23. G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  24. A. Goldman and J. R. Gillis, “Spectral line parameters for the A2∑−X2Π(0,0) band of OH for atmospheric and high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981).
    [CrossRef]
  25. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
    [CrossRef]
  26. J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966).
    [CrossRef]
  27. C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004).
    [CrossRef]
  28. G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003).
    [CrossRef]
  29. D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005).
    [CrossRef]
  30. Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
    [CrossRef]
  31. A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” J. Alloys Compd. 288, 124–140 (1999).
    [CrossRef]
  32. D. A. Young, Phase Diagrams of the Elements (University of California, 1991).
  33. C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
    [CrossRef]
  34. H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Mineralog. 84, 528–535 (1999).
  35. G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
    [CrossRef]
  36. J. Israelachvili, Intermolecular and Surface Forces (Academic, 1995).

2011 (2)

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

A. Nath and A. Khare, “Effect of focusing conditions on laser-induced shock waves at titanium–water interface,” Appl. Opt. 50, 3275–3281 (2011).
[CrossRef]

2009 (1)

2008 (1)

F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008).
[CrossRef]

2007 (2)

X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007).
[CrossRef]

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
[CrossRef]

2006 (3)

R. M. Tilaki, A. Iraji Zad, and S. M. Mahdavi, “Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media,” Appl. Phys. A 84, 215–219(2006).
[CrossRef]

Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006).
[CrossRef]

J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
[CrossRef]

2005 (4)

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005).
[CrossRef]

2004 (2)

C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004).
[CrossRef]

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

2003 (4)

J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
[CrossRef]

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003).
[CrossRef]

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta. B 58, 249–257 (2003).
[CrossRef]

2001 (1)

T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001).
[CrossRef]

2000 (1)

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[CrossRef]

1999 (3)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” J. Alloys Compd. 288, 124–140 (1999).
[CrossRef]

H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Mineralog. 84, 528–535 (1999).

1997 (1)

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

1995 (1)

Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
[CrossRef]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

1988 (1)

1985 (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).

1984 (1)

1981 (1)

A. Goldman and J. R. Gillis, “Spectral line parameters for the A2∑−X2Π(0,0) band of OH for atmospheric and high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981).
[CrossRef]

1966 (1)

J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966).
[CrossRef]

1962 (1)

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

1957 (1)

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–930 (1957).
[CrossRef]

Achour, M.

A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” J. Alloys Compd. 288, 124–140 (1999).
[CrossRef]

Afir, A.

A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” J. Alloys Compd. 288, 124–140 (1999).
[CrossRef]

Akahama, Y.

Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
[CrossRef]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Banfield, J. F.

H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Mineralog. 84, 528–535 (1999).

Barberoglou, M.

Bartnicki, E.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Batani, D.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Benedetti, L. R.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Benuzzi-Mounaix, A.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Berthe, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Bradley, D. K.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Capon, M. R. C.

Celliers, P. M.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Chen, X. Y.

X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007).
[CrossRef]

Choe, W.

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta. B 58, 249–257 (2003).
[CrossRef]

Collins, G. W.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Cremers, D. A.

Crosswhite, H. M.

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Cui, H.

X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

Da Silva, L. B.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Dague, N.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Danson, C.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Dieke, G. H.

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Docchio, F.

Du, X. W.

F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008).
[CrossRef]

Du, X.-W.

J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
[CrossRef]

Eggert, J. H.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Errandoneaa, D.

D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005).
[CrossRef]

Fabbro, R.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Feder, J.

J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966).
[CrossRef]

Fotakis, C.

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).

Garcia, C.

Gillis, J. R.

A. Goldman and J. R. Gillis, “Spectral line parameters for the A2∑−X2Π(0,0) band of OH for atmospheric and high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981).
[CrossRef]

Goldman, A.

A. Goldman and J. R. Gillis, “Spectral line parameters for the A2∑−X2Π(0,0) band of OH for atmospheric and high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981).
[CrossRef]

Hanfland, M.

Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
[CrossRef]

Häusermann, D.

D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005).
[CrossRef]

Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
[CrossRef]

Henry, E.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Hicks, D. G.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Hu, S. L.

F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008).
[CrossRef]

Hu, S.-L.

J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
[CrossRef]

Ipper, E. P.

J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).

Iraji Zad, A.

R. M. Tilaki, A. Iraji Zad, and S. M. Mahdavi, “Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media,” Appl. Phys. A 84, 215–219(2006).
[CrossRef]

Iryo, K.

T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001).
[CrossRef]

Ishikawa, Y.

Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006).
[CrossRef]

Israelachvili, J.

J. Israelachvili, Intermolecular and Surface Forces (Academic, 1995).

Jeanloz, R.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Jiang, L.

J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
[CrossRef]

Khare, A.

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

A. Nath and A. Khare, “Effect of focusing conditions on laser-induced shock waves at titanium–water interface,” Appl. Opt. 50, 3275–3281 (2011).
[CrossRef]

Koeing, M.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Kohno, J.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[CrossRef]

Kondow, T.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[CrossRef]

Koshizaki, N.

Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006).
[CrossRef]

C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005).
[CrossRef]

Kwamura, H.

Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
[CrossRef]

Laha, S. S.

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

Lee, K. K. M.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Lei, Y.-W.

J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
[CrossRef]

Liang, C. H.

C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005).
[CrossRef]

Lin, W. Z.

J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).

Liu, P.

X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

Liu, Q. X.

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Loree, T. R.

Lothe, J.

J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966).
[CrossRef]

Mafuné, F.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[CrossRef]

Mahdavi, S. M.

R. M. Tilaki, A. Iraji Zad, and S. M. Mahdavi, “Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media,” Appl. Phys. A 84, 215–219(2006).
[CrossRef]

Marchet, B.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Masclet, I.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Mellerio, J.

Meng, Y.

D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005).
[CrossRef]

Moon, S. J.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Moon, S. Y.

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta. B 58, 249–257 (2003).
[CrossRef]

Nath, A.

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

A. Nath and A. Khare, “Effect of focusing conditions on laser-induced shock waves at titanium–water interface,” Appl. Opt. 50, 3275–3281 (2011).
[CrossRef]

Neely, D.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Nellore, A.

G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003).
[CrossRef]

Nisimura, Y.

T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001).
[CrossRef]

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

Oskam, G.

G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003).
[CrossRef]

Pasley, J.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Penn, R. L.

G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003).
[CrossRef]

Peyre, P.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Pound, G. M.

J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966).
[CrossRef]

Puliafito, C. A.

J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).

Rabec Le Gloahec, M.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Radziemski, L. J.

Regondi, P.

Ren, ZH. A.

J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
[CrossRef]

Reverdin, C.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Rice, M. H.

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–930 (1957).
[CrossRef]

Russel, K. C.

J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966).
[CrossRef]

Saoula, N.

A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” J. Alloys Compd. 288, 124–140 (1999).
[CrossRef]

Sasaki, T.

Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006).
[CrossRef]

C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005).
[CrossRef]

Sawabe, H.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[CrossRef]

Searson, P. C.

G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003).
[CrossRef]

Shafeev, G. A.

Shimizu, Y.

Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006).
[CrossRef]

C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005).
[CrossRef]

Shimomura, O.

Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
[CrossRef]

Somayazulu, M.

D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005).
[CrossRef]

Steinert, R. F.

J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).

Stratakis, E.

Sun, J.

F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008).
[CrossRef]

J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
[CrossRef]

Takeda, Y.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[CrossRef]

Tian, F.

F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008).
[CrossRef]

Tilaki, R. M.

R. M. Tilaki, A. Iraji Zad, and S. M. Mahdavi, “Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media,” Appl. Phys. A 84, 215–219(2006).
[CrossRef]

Tollier, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Tsuji, M.

T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001).
[CrossRef]

Tsuji, T.

T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001).
[CrossRef]

Viau, G.

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Vogel, A.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

Wallace, R. J.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Walsh, J. M.

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–930 (1957).
[CrossRef]

Wang, C. X.

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004).
[CrossRef]

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Wang, G. W.

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Wang, J. B.

J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
[CrossRef]

Willi, O.

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Xu, N. S.

C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004).
[CrossRef]

Yang, G. W.

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
[CrossRef]

X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007).
[CrossRef]

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004).
[CrossRef]

J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
[CrossRef]

Yang, Y. H.

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004).
[CrossRef]

Young, D. A.

D. A. Young, Phase Diagrams of the Elements (University of California, 1991).

Zhang, C. Y.

J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
[CrossRef]

Zhang, H.

H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Mineralog. 84, 528–535 (1999).

Zhang, W.

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

Zhong, X. L.

J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
[CrossRef]

Adv. Phys. (1)

J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours,” Adv. Phys. 15, 111–178 (1966).
[CrossRef]

Am. Mineralog. (1)

H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Mineralog. 84, 528–535 (1999).

Appl. Opt. (2)

Appl. Phys. A (2)

R. M. Tilaki, A. Iraji Zad, and S. M. Mahdavi, “Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media,” Appl. Phys. A 84, 215–219(2006).
[CrossRef]

C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A 80, 819–822 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

J. Sun, S.-L. Hu, X.-W. Du, Y.-W. Lei, and L. Jiang, “Ultrafine diamond synthesized by long-pulse-width laser,” Appl. Phys. Lett. 89, 183115 (2006).
[CrossRef]

X. Y. Chen, H. Cui, P. Liu, and G. W. Yang, “Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles,” Appl. Phys. Lett. 90, 183118 (2007).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87, 201913 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

A. Nath, S. S. Laha, and A. Khare, “Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface,” Appl. Surf. Sci. 257, 3118–3122 (2011).
[CrossRef]

Chem. Phys. Lett. (2)

J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong, and ZH. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,” Chem. Phys. Lett. 367, 10–14 (2003).
[CrossRef]

Q. X. Liu, C. X. Wang, W. Zhang, and G. W. Wang, “Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction,” Chem. Phys. Lett. 382, 1–5 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ipper, C. A. Puliafito, and R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: Plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).

J. Alloys Compd. (1)

A. Afir, M. Achour, and N. Saoula, “X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum,” J. Alloys Compd. 288, 124–140 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, “Thermodynamics of diamond nucleation on the nanoscale,” J. Am. Chem. Soc. 126, 11303–11306 (2004).
[CrossRef]

J. Appl. Phys. (4)

C. X. Wang, Y. H. Yang, and G. W. Yang, “Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid,” J. Appl. Phys. 97, 066104 (2005).
[CrossRef]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

F. Tian, J. Sun, S. L. Hu, and X. W. Du, “Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation,” J. Appl. Phys. 104, 096102 (2008).
[CrossRef]

J. Chem. Phys. (1)

M. H. Rice and J. M. Walsh, “Equation of state of water to 250 kilobars,” J. Chem. Phys. 26, 824–930 (1957).
[CrossRef]

J. Colloid Interface Sci. (1)

Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature,” J. Colloid Interface Sci. 300, 612–615 (2006).
[CrossRef]

J. Photochem. Photobiol. A (1)

T. Tsuji, K. Iryo, Y. Nisimura, and M. Tsuji, “Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II),” J. Photochem. Photobiol. A 145, 201–207 (2001).
[CrossRef]

J. Phys. B (1)

D. Errandoneaa, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress,” J. Phys. B 355, 116–125 (2005).
[CrossRef]

J. Phys. Chem. B (2)

G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio,” J. Phys. Chem. B 107, 1734–1738 (2003).
[CrossRef]

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104, 8333–8337 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

A. Goldman and J. R. Gillis, “Spectral line parameters for the A2∑−X2Π(0,0) band of OH for atmospheric and high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981).
[CrossRef]

Opt. Express (1)

Phys. Plasmas (1)

P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koeing, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41–L44 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Akahama, H. Kwamura, D. Häusermann, M. Hanfland, and O. Shimomura, “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Phys. Rev. Lett. 74, 4690–4693 (1995).
[CrossRef]

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–698(2007).
[CrossRef]

Spectrochim. Acta. B (1)

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta. B 58, 249–257 (2003).
[CrossRef]

Other (2)

J. Israelachvili, Intermolecular and Surface Forces (Academic, 1995).

D. A. Young, Phase Diagrams of the Elements (University of California, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup: (a) BDS and (b) LIBS.

Fig. 2.
Fig. 2.

Beam deflection traces: trace 1, trigger signal; trace 2, 0 mm; and trace 3, 0.5 mm from the titanium–water interface.

Fig. 3.
Fig. 3.

LIBS emission spectra showing the OH band at 306 nm.

Fig. 4.
Fig. 4.

(a) TEM images, (b) Particle size distribution, (c) SAED pattern, and (d) HRTEM image.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

p p 0 = U s u p ρ ,
U s = A + B u p ,
I OH = D 0 k 4 A exp ( E r k B T rot ) ,
D 0 = C ( J + J + 1 ) Q r ,
E r = B υ h c J ( J + 1 ) .
I = I OH Δ i π / 2 exp ( 2 ( λ λ 0 ) 2 Δ i 2 ) ,
Ti ( titanium plasma ) + 4 OH ( water plasma ) TiO 2 ( clusters ) + 2 H 2 O .
τ = 2 π m k T k B T γ p s ( T ) ( Δ μ ) 2 ,
r * = 2 γ ( 2 3 + V m Δ V ) [ p s ( T ) p ]
Δ μ = Δ V [ p p s ( T ) ] V m N A .
d = V ( 2 τ d τ ) + 2 r * .
V = ς v ( p p s p ) exp ( E a R T ) ,

Metrics