Abstract

A theoretical multiscale approach combining density functional theory and four-flux calculations based on the radiative transfer theory is used to prospect the optical properties of nanocomposite materials composed of inorganic nanoparticles of lanthanum-containing compounds (LaF3 or LaPO4) embedded in Poly(methyl methacrylate) (PMMA). This theoretical investigation shows that a potential route to produce lead-free x-ray shielding screens with high transparency in the visible range (>70% of incident light) may consist in incorporating colorless LaF3 or LaPO4 spherical particles with a diameter lower than 6 nm in a PMMA panel from a minimum thickness of 3 mm with a volumetric fraction of at least 10%. In terms of x-ray attenuation, this would lead to lead equivalency of 0.1 mm (lead foil).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
    [CrossRef]
  2. R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).
  3. J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3nanoparticles,” Nano Lett. 2, 733–737 (2002).
    [CrossRef]
  4. T. Grzyb and S. Lis, “Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method,” J. Rare Earth 27, 588–592 (2009).
    [CrossRef]
  5. D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
    [CrossRef]
  6. M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008).
    [CrossRef]
  7. H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005).
    [CrossRef]
  8. W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009).
    [CrossRef]
  9. Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007).
    [CrossRef]
  10. M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009).
    [CrossRef]
  11. F. El Haber and G. Froyer, “Transparent polymers embedding nanoparticles for x-rays attenuation,” J. Univ. Chem. Technol. Metall. 43, 283–290 (2008).
  12. The RoHS Regulation, Directive 2002/95/EC, http://www.rohs.eu .
  13. F. El Haber, “Contribution à l’obtention de verres organiques sans plomb atténuateurs des rayons X- Synthèse modification de surface et caractérisations de nanoparticules incorporables dans les polymères acryliques” Ph.D thesis (Université de Nantes, 2007).
  14. M. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2004).
  15. B. Maheu and G. Gouesbet, “Four-flux models to solve the scattering transfer equation: special cases,” Appl. Opt. 25, 1122–1128 (1986).
    [CrossRef]
  16. B. Maheu, J. N. Le Toulouzan, and G. Couesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984).
    [CrossRef]
  17. J.-C. Auger, B. Stout, and J. Lafait, “Dependent light scattering in dense heterogeneous media,” Physica B 279, 21–24 (2000).
    [CrossRef]
  18. G. A. Niklasson, “Comparison between four flux theory and multiple scattering theory,” Appl. Opt. 26, 4034–4036 (1987).
    [CrossRef]
  19. W. D. Lynch, Interband Absorption-Mechanisms and Interpretations—Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  20. F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids, R. A. Ballinger, ed. (Pergamon, 1975).
  21. C. Ambrosch-Draxl and J. Sofo, “Linear optical properties of solids within the full-potential linearized augmented plane wave method,” Comput. Phys. Commun. 175, 1–14 (2006).
    [CrossRef]
  22. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).
  23. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
    [CrossRef]
  24. W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998).
    [CrossRef]
  25. C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001).
    [CrossRef]
  26. K.-H. Park and S.-J. Oh, “Electron-spectroscopy study of rare-earth trihalides,” Phys. Rev. B 48, 14833–14842 (1993).
    [CrossRef]
  27. K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
    [CrossRef]
  28. C. G. Olson, M. Piacentini, and D. W. Lynch,“Optical properties of single crystals of some rare-earth trifluorides, 5–34 eV,” Phys. Rev. B 18, 5740–5749 (1978).
    [CrossRef]
  29. E. Nakzawa and F. J. Shiga,“Vacuum ultraviolet luminescence-excitation spectra of RPO4:Eu3+ (R=Y, La, Gd and Lu),” J. Lumin. 15, 255–259 (1977).
    [CrossRef]
  30. K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
    [CrossRef]
  31. P. Chindaudom and K. Vedam, “Determination of the optical constants of an inhomogeneous transparent LaF3 thin film on a transparent substrate by spectroscopic ellipsometry,” Opt. Lett. 17, 538–540 (1992).
    [CrossRef]
  32. C. M. Gramaccioli and T. V. Segalstad, “A uranium-and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy,” Am. Mineral. 63, 757–761 (1978).
  33. A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
    [CrossRef]
  34. O. Zieman, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, 2008).

2009

T. Grzyb and S. Lis, “Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method,” J. Rare Earth 27, 588–592 (2009).
[CrossRef]

W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009).
[CrossRef]

M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009).
[CrossRef]

2008

F. El Haber and G. Froyer, “Transparent polymers embedding nanoparticles for x-rays attenuation,” J. Univ. Chem. Technol. Metall. 43, 283–290 (2008).

M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008).
[CrossRef]

2007

Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007).
[CrossRef]

2006

C. Ambrosch-Draxl and J. Sofo, “Linear optical properties of solids within the full-potential linearized augmented plane wave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[CrossRef]

2005

H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005).
[CrossRef]

D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
[CrossRef]

2003

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
[CrossRef]

2002

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3nanoparticles,” Nano Lett. 2, 733–737 (2002).
[CrossRef]

2001

J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
[CrossRef]

C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001).
[CrossRef]

2000

J.-C. Auger, B. Stout, and J. Lafait, “Dependent light scattering in dense heterogeneous media,” Physica B 279, 21–24 (2000).
[CrossRef]

1998

1997

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

1996

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[CrossRef]

1993

K.-H. Park and S.-J. Oh, “Electron-spectroscopy study of rare-earth trihalides,” Phys. Rev. B 48, 14833–14842 (1993).
[CrossRef]

1992

1987

1986

1984

1978

C. M. Gramaccioli and T. V. Segalstad, “A uranium-and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy,” Am. Mineral. 63, 757–761 (1978).

C. G. Olson, M. Piacentini, and D. W. Lynch,“Optical properties of single crystals of some rare-earth trifluorides, 5–34 eV,” Phys. Rev. B 18, 5740–5749 (1978).
[CrossRef]

1977

E. Nakzawa and F. J. Shiga,“Vacuum ultraviolet luminescence-excitation spectra of RPO4:Eu3+ (R=Y, La, Gd and Lu),” J. Lumin. 15, 255–259 (1977).
[CrossRef]

Ambrosch-Draxl, C.

C. Ambrosch-Draxl and J. Sofo, “Linear optical properties of solids within the full-potential linearized augmented plane wave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[CrossRef]

Andraud, C.

A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
[CrossRef]

Anisimov, V. I.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Anton, H.

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

Auger, J.-C.

J.-C. Auger, B. Stout, and J. Lafait, “Dependent light scattering in dense heterogeneous media,” Physica B 279, 21–24 (2000).
[CrossRef]

Bassani, F.

F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids, R. A. Ballinger, ed. (Pergamon, 1975).

Blaha, P.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[CrossRef]

Charron, E.

A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
[CrossRef]

Chen, D.

Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007).
[CrossRef]

Chindaudom, P.

Chung, W. J.

M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008).
[CrossRef]

Chunyan, C.

W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009).
[CrossRef]

Couesbet, G.

Da Silva, A.

A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
[CrossRef]

Dang, H.

J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
[CrossRef]

Daum, W.

O. Zieman, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, 2008).

Dekker, R.

R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).

Driessen, A.

R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).

El Haber, F.

F. El Haber and G. Froyer, “Transparent polymers embedding nanoparticles for x-rays attenuation,” J. Univ. Chem. Technol. Metall. 43, 283–290 (2008).

F. El Haber, “Contribution à l’obtention de verres organiques sans plomb atténuateurs des rayons X- Synthèse modification de surface et caractérisations de nanoparticules incorporables dans les polymères acryliques” Ph.D thesis (Université de Nantes, 2007).

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[CrossRef]

Eyert, V.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Fan, X.

D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
[CrossRef]

Froyer, G.

F. El Haber and G. Froyer, “Transparent polymers embedding nanoparticles for x-rays attenuation,” J. Univ. Chem. Technol. Metall. 43, 283–290 (2008).

Girasole, T.

C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001).
[CrossRef]

Gouesbet, G.

C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001).
[CrossRef]

B. Maheu and G. Gouesbet, “Four-flux models to solve the scattering transfer equation: special cases,” Appl. Opt. 25, 1122–1128 (1986).
[CrossRef]

Gramaccioli, C. M.

C. M. Gramaccioli and T. V. Segalstad, “A uranium-and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy,” Am. Mineral. 63, 757–761 (1978).

Gréhan, G.

C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001).
[CrossRef]

Grzyb, T.

T. Grzyb and S. Lis, “Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method,” J. Rare Earth 27, 588–592 (2009).
[CrossRef]

Hannebauer, B.

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

He, H.

M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009).
[CrossRef]

Held, K.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Hong, S. I.

M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008).
[CrossRef]

Jisen, Z.

W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009).
[CrossRef]

Johnson, K. H.

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

Jung, H.-K.

H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005).
[CrossRef]

Keller, G.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Krauser, J.

O. Zieman, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, 2008).

Kvasnicka, D.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).

Lacis, A. A.

M. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2004).

Lafait, J.

A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
[CrossRef]

J.-C. Auger, B. Stout, and J. Lafait, “Dependent light scattering in dense heterogeneous media,” Physica B 279, 21–24 (2000).
[CrossRef]

Le Toulouzan, J. N.

Lee, T.-H.

H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005).
[CrossRef]

Lim, M. A.

M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008).
[CrossRef]

Lis, S.

T. Grzyb and S. Lis, “Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method,” J. Rare Earth 27, 588–592 (2009).
[CrossRef]

Liu, W.

J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
[CrossRef]

Lu, F.

Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007).
[CrossRef]

Luitz, J.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).

Lynch, D. W.

C. G. Olson, M. Piacentini, and D. W. Lynch,“Optical properties of single crystals of some rare-earth trifluorides, 5–34 eV,” Phys. Rev. B 18, 5740–5749 (1978).
[CrossRef]

Lynch, W. D.

W. D. Lynch, Interband Absorption-Mechanisms and Interpretations—Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Madsen, G.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).

Maheu, B.

McMahan, A. K.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Mishchenko, M.

M. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2004).

Mishra, K. C.

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

Nakzawa, E.

E. Nakzawa and F. J. Shiga,“Vacuum ultraviolet luminescence-excitation spectra of RPO4:Eu3+ (R=Y, La, Gd and Lu),” J. Lumin. 15, 255–259 (1977).
[CrossRef]

Nekrasov, I. A.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Niklasson, G. A.

Oh, J.-S.

H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005).
[CrossRef]

Oh, S.-J.

K.-H. Park and S.-J. Oh, “Electron-spectroscopy study of rare-earth trihalides,” Phys. Rev. B 48, 14833–14842 (1993).
[CrossRef]

Olson, C. G.

C. G. Olson, M. Piacentini, and D. W. Lynch,“Optical properties of single crystals of some rare-earth trifluorides, 5–34 eV,” Phys. Rev. B 18, 5740–5749 (1978).
[CrossRef]

Osterloh, I.

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

Park, K.-H.

K.-H. Park and S.-J. Oh, “Electron-spectroscopy study of rare-earth trihalides,” Phys. Rev. B 48, 14833–14842 (1993).
[CrossRef]

Parravicini, G. P.

F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids, R. A. Ballinger, ed. (Pergamon, 1975).

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[CrossRef]

Pi, D.

D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
[CrossRef]

Piacentini, M.

C. G. Olson, M. Piacentini, and D. W. Lynch,“Optical properties of single crystals of some rare-earth trifluorides, 5–34 eV,” Phys. Rev. B 18, 5740–5749 (1978).
[CrossRef]

Rozé, C.

C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001).
[CrossRef]

Schmidt, P. C.

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

Schwarz, K.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).

Segalstad, T. V.

C. M. Gramaccioli and T. V. Segalstad, “A uranium-and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy,” Am. Mineral. 63, 757–761 (1978).

Seog, S. I.

M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008).
[CrossRef]

Seok, S.-I.

H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005).
[CrossRef]

Shiga, F. J.

E. Nakzawa and F. J. Shiga,“Vacuum ultraviolet luminescence-excitation spectra of RPO4:Eu3+ (R=Y, La, Gd and Lu),” J. Lumin. 15, 255–259 (1977).
[CrossRef]

Sofo, J.

C. Ambrosch-Draxl and J. Sofo, “Linear optical properties of solids within the full-potential linearized augmented plane wave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[CrossRef]

Stout, B.

A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
[CrossRef]

J.-C. Auger, B. Stout, and J. Lafait, “Dependent light scattering in dense heterogeneous media,” Physica B 279, 21–24 (2000).
[CrossRef]

Stouwdam, J. W.

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3nanoparticles,” Nano Lett. 2, 733–737 (2002).
[CrossRef]

Sudarsan, V.

R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).

Travis, L. D.

M. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2004).

van Veggel, F. C. J. M.

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3nanoparticles,” Nano Lett. 2, 733–737 (2002).
[CrossRef]

R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).

Vargas, W. E.

Vedam, K.

Vollhardt, D.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Wang, F.

D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
[CrossRef]

Wang, M.

D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
[CrossRef]

Wei, Y.

Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007).
[CrossRef]

Weiping, Q.

W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009).
[CrossRef]

Wörhoff, K.

R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).

Wu, Z.

J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
[CrossRef]

Xie, M.-Y.

M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009).
[CrossRef]

Yan, W.

W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009).
[CrossRef]

Yu, L.

M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009).
[CrossRef]

Yu, X.-F.

M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009).
[CrossRef]

Zamzow, P. E.

O. Zieman, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, 2008).

Zhang, X.

Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007).
[CrossRef]

Zhang, Y.

D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
[CrossRef]

Zhang, Z.

J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
[CrossRef]

Zhou, J.

J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
[CrossRef]

Zieman, O.

O. Zieman, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, 2008).

Adv. Solid State Phys.

K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003).
[CrossRef]

Am. Mineral.

C. M. Gramaccioli and T. V. Segalstad, “A uranium-and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy,” Am. Mineral. 63, 757–761 (1978).

Appl. Opt.

Comput. Phys. Commun.

C. Ambrosch-Draxl and J. Sofo, “Linear optical properties of solids within the full-potential linearized augmented plane wave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[CrossRef]

J. Lumin.

H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005).
[CrossRef]

E. Nakzawa and F. J. Shiga,“Vacuum ultraviolet luminescence-excitation spectra of RPO4:Eu3+ (R=Y, La, Gd and Lu),” J. Lumin. 15, 255–259 (1977).
[CrossRef]

K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997).
[CrossRef]

J. Rare Earth

T. Grzyb and S. Lis, “Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method,” J. Rare Earth 27, 588–592 (2009).
[CrossRef]

J. Solid State Chem.

M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009).
[CrossRef]

J. Univ. Chem. Technol. Metall.

F. El Haber and G. Froyer, “Transparent polymers embedding nanoparticles for x-rays attenuation,” J. Univ. Chem. Technol. Metall. 43, 283–290 (2008).

Mater. Lett.

W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009).
[CrossRef]

Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007).
[CrossRef]

Nano Lett.

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3nanoparticles,” Nano Lett. 2, 733–737 (2002).
[CrossRef]

Opt. Commun.

C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001).
[CrossRef]

Opt. Lett.

Opt. Mater.

M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008).
[CrossRef]

Phys. Rev. B

K.-H. Park and S.-J. Oh, “Electron-spectroscopy study of rare-earth trihalides,” Phys. Rev. B 48, 14833–14842 (1993).
[CrossRef]

C. G. Olson, M. Piacentini, and D. W. Lynch,“Optical properties of single crystals of some rare-earth trifluorides, 5–34 eV,” Phys. Rev. B 18, 5740–5749 (1978).
[CrossRef]

Phys. Rev. Lett.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[CrossRef]

Physica B

A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003).
[CrossRef]

J.-C. Auger, B. Stout, and J. Lafait, “Dependent light scattering in dense heterogeneous media,” Physica B 279, 21–24 (2000).
[CrossRef]

Spectrochim. Acta A

D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005).
[CrossRef]

Wear

J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001).
[CrossRef]

Other

R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).

The RoHS Regulation, Directive 2002/95/EC, http://www.rohs.eu .

F. El Haber, “Contribution à l’obtention de verres organiques sans plomb atténuateurs des rayons X- Synthèse modification de surface et caractérisations de nanoparticules incorporables dans les polymères acryliques” Ph.D thesis (Université de Nantes, 2007).

M. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2004).

W. D. Lynch, Interband Absorption-Mechanisms and Interpretations—Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids, R. A. Ballinger, ed. (Pergamon, 1975).

O. Zieman, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

X-ray shielding structure used in radiology departments where the x-ray manipulator has to be protected against x rays in everyday life. The transparent x-ray shield (upper part) should transmit at least 70% of visible light with lead equivalency of 0.1 mm

Fig. 2.
Fig. 2.

Schematic representation of the interaction of light with an x-ray absorbing panel built upon inorganic NPs embedded in PMMA (Rcc, specular reflectance; Rcd, scattered reflectance; Tcc, specular transmission; Tcd, scattered transmission).

Fig. 3.
Fig. 3.

Comparison of the total densities of states of LaF 3 deduced from (a) GGA, (b)  GGA + U , and (c)  GGA + U + SO approaches. The open circles correspond to the XPS/BIS experimental data [26].

Fig. 4.
Fig. 4.

Experimental [28] (open circles) and theoretical reflectance spectra of LaF 3 : (a) simulations deduced from GGA (dashed line) and GGA + SO (solid line), (b) simulations deduced from GGA + U (dashed line) and GGA + U + SO (solid line). The arrow indicates the region that is incorrectly simulated by the GGA + SO approach due to an underestimation of the 4 f ( La ) energy.

Fig. 5.
Fig. 5.

(a) Theoretical extinction coefficients and (b) refractive indices of LaF 3 and LaPO 4 deduced from GGA + U + SO calculations.

Fig. 6.
Fig. 6.

Evolution of the total transmission ( Tcc + Tcd ) versus the thickness e of the x-ray absorbing layer for e ranging from 3 to 5 mm ( D p = 6 mm , vol . % = 10 % ). (a)  LaF 3 NPs n p = 1.62 ; (b)  LaPO 4 NPs n p = 1.8 .

Fig. 7.
Fig. 7.

(a) Transmission at 555 nm of x-ray attenuators whose thickness ranges from 0.5 to 5 mm for LaF 3 and LaPO 4 NPs embedded in PMMA (volume fraction of 10%). (Left)  D p = 3 nm ; (Right)  D p = 15 nm . (b) Transmission at 555 nm versus inorganic NP diameters a 3 mm thick x-ray shield (volume fraction of NPs = 10 % ). (c) Light transmission of LaF 3 / PMMA x-ray attenuator versus D p / λ (where λ = 380 800 nm ) ratio for particle diameters of 3, 5, 10 and 15 nm ( e = 3 mm , vol . % = 10 ).

Fig. 8.
Fig. 8.

Light transmission variation with the n p / n PMMA ratio for LaF 3 and LaPO 4 NPs for volume fraction ranging from 10% to 70% ( e = 3 mm , D p = 6 mm ).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( ω ) = ( ε 1 ( ω ) + ( ω 1 2 ( ω ) ) 0.5 ) 0.5 2 ,
k ( ω ) = ( ε 1 ( ω ) + ( ω 1 2 ( ω ) + ω 2 2 ( ω ) ) 0.5 ) 0.5 2 ,
I R = 8 π 4 n m D p 6 λ 4 r 2 | ( n p n m ) 2 1 ( n p n m ) 2 + 2 | ( 1 + cos θ ) I 0 ,
d I d s = ( α abs + α sca ) I + α sca 4 π p · I d ω single scattering m ultiple scattering ,

Metrics