Abstract

We demonstrate that single layer graphene exhibits a strong nonlinear photon-mixing effect in the terahertz frequency regime. Up to room temperature, the third-order nonlinear current in graphene grows rapidly with increasing temperature. The third-order nonlinear current can be as strong as the linear current under a moderate electric field strength of 104V/cm. Because of the unique Dirac behavior of the graphene quasi-particles, low Fermi level and electron fillings optimizes the optical nonlinearity. Under a strong-field condition, the strong-field-induced Dirac fermion population redistribution and nonequilibrium carrier heating effects further amplify the optical nonlinearity of graphene. Our results suggest that doped graphene can potentially be utilized as a strong terahertz photon mixer in the room-temperature regime.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription