Abstract

We present a summary of recent studies of ballistic currents using nonlinear optical techniques. Quantum interference between one- and two-photon absorption pathways is used to inject and control ballistic currents in GaAs samples. With this, a pure charge current, pure spin current, or spin-polarized charge current can be injected by changing the polarization configuration of the two pump pulses. Such currents are temporally and spatially resolved using high-resolution pump–probe techniques, including a derivative-detection scheme, which allows detection of the motion of carriers as small as 0.1 nm. Observation of the intrinsic inverse spin Hall effect in the ballistic regime, a study of time-resolved ballistic spin-polarized charge currents, and a study of the efficiency of spin current injection by quantum interference were all achieved using these techniques. Additionally, we discuss demonstrations of second-order nonlinear optical effects induced by charge and spin currents, which allow for the nondestructive, noninvasive, and real-time imaging of currents.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2002).
  2. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996).
  3. J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures,” Phys. Rev. B 30, 7346–7348 (1984).
    [CrossRef]
  4. K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987).
    [CrossRef]
  5. H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992).
    [CrossRef]
  6. J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
    [CrossRef]
  7. V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995).
    [CrossRef]
  8. A. C. Schaefer, J. Erland, and D. G. Steel, “Nondiffusive excitonic transport in GaAs and the effects of momentum scattering,” Phys. Rev. B 54, R11046–R11049 (1996).
    [CrossRef]
  9. F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985).
    [CrossRef]
  10. L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
    [CrossRef]
  11. L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
    [CrossRef]
  12. H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992).
    [CrossRef]
  13. M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
    [CrossRef]
  14. B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
    [CrossRef]
  15. H. Zhao, “Temperature dependence of ambipolar diffusion in silicon on insulator,” Appl. Phys. Lett. 92, 112104 (2008).
    [CrossRef]
  16. H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79, 115321 (2009).
    [CrossRef]
  17. B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
    [CrossRef]
  18. B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
    [CrossRef]
  19. B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010).
    [CrossRef]
  20. N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
    [CrossRef]
  21. L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
    [CrossRef]
  22. F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
    [CrossRef]
  23. A. Vertikov, I. Ozden, and A. Nurmikko, “Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy,” Appl. Phys. Lett. 74, 850–852 (1999).
    [CrossRef]
  24. V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
    [CrossRef]
  25. H. Hillmer, A. Forchel, and C. W. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlGaAs quantum wells,” Phys. Rev. B 45, 1240–1245 (1992).
    [CrossRef]
  26. H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B 49, 14523–14530 (1994).
    [CrossRef]
  27. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
    [CrossRef]
  28. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
    [CrossRef]
  29. S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665–667 (1990).
    [CrossRef]
  30. D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
    [CrossRef]
  31. H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
    [CrossRef]
  32. T. Sogawa, H. Ando, and S. Ando, “Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires,” Phys. Rev. B 61, 5535–5539 (2000).
    [CrossRef]
  33. T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
    [CrossRef]
  34. J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005).
    [CrossRef]
  35. O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
    [CrossRef]
  36. J. M. Kikkawa and D. D. Awschalom, “Lateral drag of spin coherence in gallium arsenide,” Nature 397, 139–141 (1999).
    [CrossRef]
  37. I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001).
    [CrossRef]
  38. I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
    [CrossRef]
  39. S. A. Crooker and D. L. Smith, “Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields,” Phys. Rev. Lett. 94, 236601 (2005).
    [CrossRef]
  40. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004).
    [CrossRef]
  41. V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
    [CrossRef]
  42. V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
    [CrossRef]
  43. N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
    [CrossRef]
  44. N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
    [CrossRef]
  45. S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
    [CrossRef]
  46. C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
    [CrossRef]
  47. S. G. Carter, Z. Chen, and S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97, 136602 (2006).
    [CrossRef]
  48. C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
    [CrossRef]
  49. J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
    [CrossRef]
  50. E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
    [CrossRef]
  51. R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
    [CrossRef]
  52. A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
    [CrossRef]
  53. T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004).
    [CrossRef]
  54. P. A. Roos, X. Li, R. P. Smith, J. A. Pipis, T. M. Fortier, and S. T. Cundiff, “Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents,” Opt. Lett. 30, 735–737 (2005).
    [CrossRef]
  55. D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
    [CrossRef]
  56. M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
    [CrossRef]
  57. R. D. R. Bhat and J. E. Sipe, “Optically injected spin currents in semiconductors,” Phys. Rev. Lett. 85, 5432–5435 (2000).
    [CrossRef]
  58. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
    [CrossRef]
  59. J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
    [CrossRef]
  60. H. Zhao, A. L. Smirl, and H. M. van Driel, “Temporally and spatially resolved ballistic pure spin transport,” Phys. Rev. B 75, 075305 (2007).
    [CrossRef]
  61. H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006).
    [CrossRef]
  62. H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008).
    [CrossRef]
  63. B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008).
    [CrossRef]
  64. B. A. Ruzicka and H. Zhao, “Power dependence of pure spin current injection by quantum interference,” Phys. Rev. B 79, 155204 (2009).
    [CrossRef]
  65. L. K. Werake and H. Zhao, “Observation of second-harmonic generation induced by pure spin currents,” Nat. Phys. 6, 875–878(2010).
    [CrossRef]
  66. E. Loren, H. Zhao, and A. L. Smirl, “All-optical injection and detection of ballistic charge currents in germanium,” J. Appl. Phys. 108, 083111 (2010).
    [CrossRef]
  67. H. Zhao and A. L. Smirl, “Injection and detection of ballistic electrical currents in silicon,” Appl. Phys. Lett. 97, 212106 (2010).
    [CrossRef]
  68. L. K. Werake, B. A. Ruzicka, and H. Zhao, “Observation of intrinsic inverse spin Hall effect,” Phys. Rev. Lett. 106, 107205 (2011).
    [CrossRef]
  69. C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
    [CrossRef]
  70. M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
    [CrossRef]
  71. L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
    [CrossRef]
  72. R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011).
    [CrossRef]
  73. C. Aversa and J. E. Sipe, “Coherent current control in semiconductors: a susceptibility perspective,” IEEE J. Quantum Electron. 32, 1570–1573 (1996).
    [CrossRef]
  74. D. Cote and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
    [CrossRef]
  75. P. Roos, Q. Quraishi, S. Cundiff, R. Bhat, and J. Sipe, “Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements,” Opt. Express 11, 2081–2090 (2003).
    [CrossRef]
  76. P. A. Roos, X. Li, J. A. Pipis, T. M. Fortier, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Characterization of carrier-envelope phase-sensitive photocurrent injection in a semiconductor,” J. Opt. Soc. Am. B 22, 362–368 (2005).
    [CrossRef]
  77. R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
    [CrossRef]
  78. D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
    [CrossRef]
  79. E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
    [CrossRef]
  80. Y. Kerachian, P. A. Marsden, and H. M. van Driel, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B 75, 125205 (2007).
    [CrossRef]
  81. Y. Kerachian, H. M. van Driel, and A. L. Smirl, “Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents,” Phys. Rev. B 75, 125206 (2007).
    [CrossRef]
  82. D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Dynamics of optical injection of charge and spin currents in quantum wells,” Phys. Rev. B 69, 035335 (2004).
    [CrossRef]
  83. K. A. Pronin and A. D. Bandrauk, “Coherent control of electric currents in superlattices and molecular wires: effect of relaxation,” Phys. Rev. B 69, 195308 (2004).
    [CrossRef]
  84. H. T. Duc, T. Meier, and S. W. Koch, “Microscopic analysis of the coherent optical generation and the decay of charge and spin currents in semiconductor heterostructures,” Phys. Rev. Lett. 95, 086606 (2005).
    [CrossRef]
  85. D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Optical injection of charge current in quantum wires: oscillations induced by excitonic effects,” Phys. Rev. B 72, 075357 (2005).
    [CrossRef]
  86. Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004).
    [CrossRef]
  87. E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
    [CrossRef]
  88. F. J. Jedema, A. T. Filip, and B. J. van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410, 345–348 (2001).
    [CrossRef]
  89. S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003).
    [CrossRef]
  90. S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
    [CrossRef]
  91. T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
    [CrossRef]
  92. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
    [CrossRef]
  93. T. Yang, T. Kimura, and Y. Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nat. Phys. 4, 851–854 (2008).
    [CrossRef]
  94. S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
    [CrossRef]
  95. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
    [CrossRef]
  96. M. I. D’yakonov and V. I. Perel, “Possibility of orienting electron spins with current,” JETP Lett. 13, 467–469 (1971).
  97. J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, 1834–1837 (1999).
    [CrossRef]
  98. S. F. Zhang, “Spin Hall effect in the presence of spin diffusion,” Phys. Rev. Lett. 85, 393–396 (2000).
    [CrossRef]
  99. S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301, 1348–1351 (2003).
    [CrossRef]
  100. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
    [CrossRef]
  101. E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602 (2004).
    [CrossRef]
  102. L. Sheng, D. N. Sheng, and C. S. Ting, “Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder,” Phys. Rev. Lett. 94, 016602 (2005).
    [CrossRef]
  103. C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
    [CrossRef]
  104. S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004).
    [CrossRef]
  105. S. Zhang and Z. Yang, “Intrinsic spin and orbital angular momentum Hall effect,” Phys. Rev. Lett. 94, 066602 (2005).
    [CrossRef]
  106. B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005).
    [CrossRef]
  107. B. A. Bernevig and S. C. Zhang, “Intrinsic spin Hall effect in the two-dimensional hole gas,” Phys. Rev. Lett. 95, 016801 (2005).
    [CrossRef]
  108. H. Engel, B. I. Halperin, and E. I. Rashba, “Theory of spin Hall conductivity in n-doped GaAs,” Phys. Rev. Lett. 95, 166605 (2005).
    [CrossRef]
  109. S. Murakami, N. Nagaosa, and S. C. Zhang, “Spin-Hall insulator,” Phys. Rev. Lett. 93, 156804 (2004).
    [CrossRef]
  110. J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005).
    [CrossRef]
  111. E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
    [CrossRef]
  112. S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall effect,” Nature 442, 176–179 (2006).
    [CrossRef]
  113. T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
    [CrossRef]
  114. J. Schliemann and D. Loss, “Dissipation effects in spin-Hall transport of electrons and holes,” Phys. Rev. B 69, 165315 (2004).
    [CrossRef]
  115. J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Suppression of the persistent spin Hall current by defect scattering,” Phys. Rev. B 70, 041303 (2004).
    [CrossRef]
  116. E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
    [CrossRef]
  117. C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
    [CrossRef]
  118. S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
    [CrossRef]
  119. S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
    [CrossRef]
  120. H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
    [CrossRef]
  121. S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
    [CrossRef]
  122. C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
    [CrossRef]
  123. K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
    [CrossRef]
  124. K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007).
    [CrossRef]
  125. X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
    [CrossRef]
  126. Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
    [CrossRef]
  127. A. Najmaie, R. D. R. Bhat, and J. E. Sipe, “All-optical injection and control of spin and electrical currents in quantum wells,” Phys. Rev. B 68, 165348 (2003).
    [CrossRef]
  128. J. Wang, B. F. Zhu, and R. B. Liu, “Second-order nonlinear optical effects of spin currents,” Phys. Rev. Lett. 104, 256601 (2010).
    [CrossRef]
  129. P. C. D. Hobbs, Building Electro-Optical Systems, 2nd ed.(Wiley, 2009).
  130. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  131. J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett. 67, 1113–1115 (1995).
    [CrossRef]
  132. B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).
  133. E. Y. Sherman, R. M. Abrarov, and J. E. Sipe, “Mode coupling and evolution in broken-symmetry plasmas,” Phys. Rev. B 80, 161308 (2009).
    [CrossRef]
  134. C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
    [CrossRef]
  135. K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
    [CrossRef]
  136. J. Bloch, J. G. Mihaychuk, and H. M. van Driel, “Electron photoinjection from silicon to ultrathin SiO2 films via ambient oxygen,” Phys. Rev. Lett. 77, 920–923 (1996).
    [CrossRef]
  137. C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
    [CrossRef]
  138. J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
    [CrossRef]
  139. A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
    [CrossRef]
  140. O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009).
    [CrossRef]

2011

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

L. K. Werake, B. A. Ruzicka, and H. Zhao, “Observation of intrinsic inverse spin Hall effect,” Phys. Rev. Lett. 106, 107205 (2011).
[CrossRef]

R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011).
[CrossRef]

2010

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
[CrossRef]

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

J. Wang, B. F. Zhu, and R. B. Liu, “Second-order nonlinear optical effects of spin currents,” Phys. Rev. Lett. 104, 256601 (2010).
[CrossRef]

L. K. Werake and H. Zhao, “Observation of second-harmonic generation induced by pure spin currents,” Nat. Phys. 6, 875–878(2010).
[CrossRef]

E. Loren, H. Zhao, and A. L. Smirl, “All-optical injection and detection of ballistic charge currents in germanium,” J. Appl. Phys. 108, 083111 (2010).
[CrossRef]

H. Zhao and A. L. Smirl, “Injection and detection of ballistic electrical currents in silicon,” Appl. Phys. Lett. 97, 212106 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
[CrossRef]

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010).
[CrossRef]

2009

H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79, 115321 (2009).
[CrossRef]

C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

E. Y. Sherman, R. M. Abrarov, and J. E. Sipe, “Mode coupling and evolution in broken-symmetry plasmas,” Phys. Rev. B 80, 161308 (2009).
[CrossRef]

A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
[CrossRef]

O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009).
[CrossRef]

B. A. Ruzicka and H. Zhao, “Power dependence of pure spin current injection by quantum interference,” Phys. Rev. B 79, 155204 (2009).
[CrossRef]

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
[CrossRef]

2008

R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
[CrossRef]

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

T. Yang, T. Kimura, and Y. Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nat. Phys. 4, 851–854 (2008).
[CrossRef]

N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
[CrossRef]

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008).
[CrossRef]

B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008).
[CrossRef]

H. Zhao, “Temperature dependence of ambipolar diffusion in silicon on insulator,” Appl. Phys. Lett. 92, 112104 (2008).
[CrossRef]

2007

O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
[CrossRef]

L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

H. Zhao, A. L. Smirl, and H. M. van Driel, “Temporally and spatially resolved ballistic pure spin transport,” Phys. Rev. B 75, 075305 (2007).
[CrossRef]

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

Y. Kerachian, P. A. Marsden, and H. M. van Driel, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B 75, 125205 (2007).
[CrossRef]

Y. Kerachian, H. M. van Driel, and A. L. Smirl, “Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents,” Phys. Rev. B 75, 125206 (2007).
[CrossRef]

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
[CrossRef]

K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007).
[CrossRef]

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
[CrossRef]

2006

E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
[CrossRef]

S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall effect,” Nature 442, 176–179 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. G. Carter, Z. Chen, and S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97, 136602 (2006).
[CrossRef]

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006).
[CrossRef]

2005

P. A. Roos, X. Li, R. P. Smith, J. A. Pipis, T. M. Fortier, and S. T. Cundiff, “Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents,” Opt. Lett. 30, 735–737 (2005).
[CrossRef]

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

S. A. Crooker and D. L. Smith, “Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields,” Phys. Rev. Lett. 94, 236601 (2005).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005).
[CrossRef]

S. Zhang and Z. Yang, “Intrinsic spin and orbital angular momentum Hall effect,” Phys. Rev. Lett. 94, 066602 (2005).
[CrossRef]

B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005).
[CrossRef]

B. A. Bernevig and S. C. Zhang, “Intrinsic spin Hall effect in the two-dimensional hole gas,” Phys. Rev. Lett. 95, 016801 (2005).
[CrossRef]

H. Engel, B. I. Halperin, and E. I. Rashba, “Theory of spin Hall conductivity in n-doped GaAs,” Phys. Rev. Lett. 95, 166605 (2005).
[CrossRef]

H. T. Duc, T. Meier, and S. W. Koch, “Microscopic analysis of the coherent optical generation and the decay of charge and spin currents in semiconductor heterostructures,” Phys. Rev. Lett. 95, 086606 (2005).
[CrossRef]

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Optical injection of charge current in quantum wires: oscillations induced by excitonic effects,” Phys. Rev. B 72, 075357 (2005).
[CrossRef]

P. A. Roos, X. Li, J. A. Pipis, T. M. Fortier, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Characterization of carrier-envelope phase-sensitive photocurrent injection in a semiconductor,” J. Opt. Soc. Am. B 22, 362–368 (2005).
[CrossRef]

L. Sheng, D. N. Sheng, and C. S. Ting, “Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder,” Phys. Rev. Lett. 94, 016602 (2005).
[CrossRef]

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[CrossRef]

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005).
[CrossRef]

2004

J. Schliemann and D. Loss, “Dissipation effects in spin-Hall transport of electrons and holes,” Phys. Rev. B 69, 165315 (2004).
[CrossRef]

J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Suppression of the persistent spin Hall current by defect scattering,” Phys. Rev. B 70, 041303 (2004).
[CrossRef]

S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004).
[CrossRef]

Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004).
[CrossRef]

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Dynamics of optical injection of charge and spin currents in quantum wells,” Phys. Rev. B 69, 035335 (2004).
[CrossRef]

K. A. Pronin and A. D. Bandrauk, “Coherent control of electric currents in superlattices and molecular wires: effect of relaxation,” Phys. Rev. B 69, 195308 (2004).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Spin-Hall insulator,” Phys. Rev. Lett. 93, 156804 (2004).
[CrossRef]

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602 (2004).
[CrossRef]

I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004).
[CrossRef]

2003

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301, 1348–1351 (2003).
[CrossRef]

S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003).
[CrossRef]

P. Roos, Q. Quraishi, S. Cundiff, R. Bhat, and J. Sipe, “Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements,” Opt. Express 11, 2081–2090 (2003).
[CrossRef]

A. Najmaie, R. D. R. Bhat, and J. E. Sipe, “All-optical injection and control of spin and electrical currents in quantum wells,” Phys. Rev. B 68, 165348 (2003).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

2002

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
[CrossRef]

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

2001

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001).
[CrossRef]

F. J. Jedema, A. T. Filip, and B. J. van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410, 345–348 (2001).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

2000

S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
[CrossRef]

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

S. F. Zhang, “Spin Hall effect in the presence of spin diffusion,” Phys. Rev. Lett. 85, 393–396 (2000).
[CrossRef]

I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
[CrossRef]

R. D. R. Bhat and J. E. Sipe, “Optically injected spin currents in semiconductors,” Phys. Rev. Lett. 85, 5432–5435 (2000).
[CrossRef]

T. Sogawa, H. Ando, and S. Ando, “Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires,” Phys. Rev. B 61, 5535–5539 (2000).
[CrossRef]

1999

J. M. Kikkawa and D. D. Awschalom, “Lateral drag of spin coherence in gallium arsenide,” Nature 397, 139–141 (1999).
[CrossRef]

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

A. Vertikov, I. Ozden, and A. Nurmikko, “Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy,” Appl. Phys. Lett. 74, 850–852 (1999).
[CrossRef]

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
[CrossRef]

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, 1834–1837 (1999).
[CrossRef]

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

1998

D. Cote and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
[CrossRef]

1997

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

1996

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

A. C. Schaefer, J. Erland, and D. G. Steel, “Nondiffusive excitonic transport in GaAs and the effects of momentum scattering,” Phys. Rev. B 54, R11046–R11049 (1996).
[CrossRef]

C. Aversa and J. E. Sipe, “Coherent current control in semiconductors: a susceptibility perspective,” IEEE J. Quantum Electron. 32, 1570–1573 (1996).
[CrossRef]

J. Bloch, J. G. Mihaychuk, and H. M. van Driel, “Electron photoinjection from silicon to ultrathin SiO2 films via ambient oxygen,” Phys. Rev. Lett. 77, 920–923 (1996).
[CrossRef]

1995

J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett. 67, 1113–1115 (1995).
[CrossRef]

V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995).
[CrossRef]

E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

1994

H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B 49, 14523–14530 (1994).
[CrossRef]

1993

J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
[CrossRef]

J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
[CrossRef]

1992

H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992).
[CrossRef]

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992).
[CrossRef]

H. Hillmer, A. Forchel, and C. W. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlGaAs quantum wells,” Phys. Rev. B 45, 1240–1245 (1992).
[CrossRef]

1991

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

1990

S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665–667 (1990).
[CrossRef]

1989

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

1988

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

1987

K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987).
[CrossRef]

1985

F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985).
[CrossRef]

1984

J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures,” Phys. Rev. B 30, 7346–7348 (1984).
[CrossRef]

1971

M. I. D’yakonov and V. I. Perel, “Possibility of orienting electron spins with current,” JETP Lett. 13, 467–469 (1971).

1967

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[CrossRef]

Abrarov, R. M.

E. Y. Sherman, R. M. Abrarov, and J. E. Sipe, “Mode coupling and evolution in broken-symmetry plasmas,” Phys. Rev. B 80, 161308 (2009).
[CrossRef]

Achermann, M.

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

Adelmann, C.

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

Akiyama, H.

H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B 49, 14523–14530 (1994).
[CrossRef]

Aktsipetrov, O.

O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009).
[CrossRef]

Alphandery, E.

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

Ando, H.

T. Sogawa, H. Ando, and S. Ando, “Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires,” Phys. Rev. B 61, 5535–5539 (2000).
[CrossRef]

Ando, K.

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

Ando, S.

T. Sogawa, H. Ando, and S. Ando, “Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires,” Phys. Rev. B 61, 5535–5539 (2000).
[CrossRef]

Arata, I.

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Atanasov, R.

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Aversa, C.

C. Aversa and J. E. Sipe, “Coherent current control in semiconductors: a susceptibility perspective,” IEEE J. Quantum Electron. 32, 1570–1573 (1996).
[CrossRef]

Awschalom, D. D.

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
[CrossRef]

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004).
[CrossRef]

I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001).
[CrossRef]

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
[CrossRef]

J. M. Kikkawa and D. D. Awschalom, “Lateral drag of spin coherence in gallium arsenide,” Nature 397, 139–141 (1999).
[CrossRef]

Baeumler, M.

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

Bandrauk, A. D.

K. A. Pronin and A. D. Bandrauk, “Coherent control of electric currents in superlattices and molecular wires: effect of relaxation,” Phys. Rev. B 69, 195308 (2004).
[CrossRef]

Bauer, G. E. W.

J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Suppression of the persistent spin Hall current by defect scattering,” Phys. Rev. B 70, 041303 (2004).
[CrossRef]

Bel’kov, V. V.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

Beregulin, E. V.

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

Berger, C.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

Bernevig, B. A.

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

B. A. Bernevig and S. C. Zhang, “Intrinsic spin Hall effect in the two-dimensional hole gas,” Phys. Rev. Lett. 95, 016801 (2005).
[CrossRef]

Berry, J. J.

I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001).
[CrossRef]

I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
[CrossRef]

Bessonov, V.

O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009).
[CrossRef]

Betz, M.

C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Bhat, R.

Bhat, R. D. R.

P. A. Roos, X. Li, J. A. Pipis, T. M. Fortier, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Characterization of carrier-envelope phase-sensitive photocurrent injection in a semiconductor,” J. Opt. Soc. Am. B 22, 362–368 (2005).
[CrossRef]

T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004).
[CrossRef]

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

A. Najmaie, R. D. R. Bhat, and J. E. Sipe, “All-optical injection and control of spin and electrical currents in quantum wells,” Phys. Rev. B 68, 165348 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
[CrossRef]

R. D. R. Bhat and J. E. Sipe, “Optically injected spin currents in semiconductors,” Phys. Rev. Lett. 85, 5432–5435 (2000).
[CrossRef]

Bloch, J.

J. Bloch, J. G. Mihaychuk, and H. M. van Driel, “Electron photoinjection from silicon to ultrathin SiO2 films via ambient oxygen,” Phys. Rev. Lett. 77, 920–923 (1996).
[CrossRef]

Bloembergen, N.

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[CrossRef]

Boeck, J. D.

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

Booker, G. R.

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

Borghs, G.

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Bristow, A. D.

L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Brüne, C.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

Buchanan, M.

E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

Bucksbaum, P. H.

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

Buhmann, H.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

Buhrman, R. A.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Butch, N. P.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

Carter, S. G.

S. G. Carter, Z. Chen, and S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97, 136602 (2006).
[CrossRef]

Chan, M. K.

E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
[CrossRef]

Chang, R. K.

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[CrossRef]

Chao, L.-L.

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

Chen, W. H.

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

Chen, Y. F.

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007).
[CrossRef]

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
[CrossRef]

Chen, Y. H.

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

Chen, Z.

S. G. Carter, Z. Chen, and S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97, 136602 (2006).
[CrossRef]

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Chiu, C. W.

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

Cho, K. S.

K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007).
[CrossRef]

Chtchelkanova, A. Y.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Chu, S. W.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

Corkum, P. B.

E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

Costa, L.

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Cote, D.

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

D. Cote and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

Couto, O. D. D.

O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
[CrossRef]

Crooker, S. A.

S. A. Crooker and D. L. Smith, “Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields,” Phys. Rev. Lett. 94, 236601 (2005).
[CrossRef]

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

Crowell, P. A.

E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
[CrossRef]

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

Culcer, D.

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

Cundiff, S.

Cundiff, S. T.

S. G. Carter, Z. Chen, and S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97, 136602 (2006).
[CrossRef]

P. A. Roos, X. Li, R. P. Smith, J. A. Pipis, T. M. Fortier, and S. T. Cundiff, “Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents,” Opt. Lett. 30, 735–737 (2005).
[CrossRef]

P. A. Roos, X. Li, J. A. Pipis, T. M. Fortier, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Characterization of carrier-envelope phase-sensitive photocurrent injection in a semiconductor,” J. Opt. Soc. Am. B 22, 362–368 (2005).
[CrossRef]

T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004).
[CrossRef]

D’yakonov, M. I.

M. I. D’yakonov and V. I. Perel, “Possibility of orienting electron spins with current,” JETP Lett. 13, 467–469 (1971).

Danilov, S. N.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

Das, B.

S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665–667 (1990).
[CrossRef]

Datta, S.

S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665–667 (1990).
[CrossRef]

Daughton, J. M.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

de Heer, W. A.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

DeCamp, M.

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

DenBaars, S. P.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

Deveaud, B.

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Optical injection of charge current in quantum wires: oscillations induced by excitonic effects,” Phys. Rev. B 72, 075357 (2005).
[CrossRef]

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Dynamics of optical injection of charge and spin currents in quantum wells,” Phys. Rev. B 69, 035335 (2004).
[CrossRef]

Devizis, A.

A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
[CrossRef]

Diehl, H.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

Divin, C.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

Donegan, J. F.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Duc, H. T.

H. T. Duc, T. Meier, and S. W. Koch, “Microscopic analysis of the coherent optical generation and the decay of charge and spin currents in semiconductor heterostructures,” Phys. Rev. Lett. 95, 086606 (2005).
[CrossRef]

Dupertuis, M. A.

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Optical injection of charge current in quantum wires: oscillations induced by excitonic effects,” Phys. Rev. B 72, 075357 (2005).
[CrossRef]

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Dynamics of optical injection of charge and spin currents in quantum wells,” Phys. Rev. B 69, 035335 (2004).
[CrossRef]

Dupont, E.

E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

Eberl, K.

D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
[CrossRef]

Engel, H.

H. Engel, B. I. Halperin, and E. I. Rashba, “Theory of spin Hall conductivity in n-doped GaAs,” Phys. Rev. Lett. 95, 166605 (2005).
[CrossRef]

Erland, J.

A. C. Schaefer, J. Erland, and D. G. Steel, “Nondiffusive excitonic transport in GaAs and the effects of momentum scattering,” Phys. Rev. B 54, R11046–R11049 (1996).
[CrossRef]

V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995).
[CrossRef]

J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
[CrossRef]

Eroms, J.

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

Eshlaghi, S.

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

Fabian, J.

I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Fedyanin, A.

O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009).
[CrossRef]

Fewer, D. T.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Filip, A. T.

F. J. Jedema, A. T. Filip, and B. J. van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410, 345–348 (2001).
[CrossRef]

First, P. N.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

Folk, J. A.

S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
[CrossRef]

Forchel, A.

H. Hillmer, A. Forchel, and C. W. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlGaAs quantum wells,” Phys. Rev. B 45, 1240–1245 (1992).
[CrossRef]

Fortier, T. M.

Fraser, J. M.

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

Frolov, S. M.

S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
[CrossRef]

Furis, M.

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

Ganichev, S. D.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
[CrossRef]

Gargill, G. S.

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

Garlid, E. S.

E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
[CrossRef]

Gedik, N.

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

Gerl, C.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

Ghosh, S.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

Giglberger, S.

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

Goldner, L.

J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures,” Phys. Rev. B 30, 7346–7348 (1984).
[CrossRef]

Gossard, A. C.

N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
[CrossRef]

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004).
[CrossRef]

Green, A. A.

R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011).
[CrossRef]

Gulbinas, V.

A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
[CrossRef]

Haché, A.

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Hägele, D.

D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
[CrossRef]

Hakuta, K.

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

Halperin, B. I.

H. Engel, B. I. Halperin, and E. I. Rashba, “Theory of spin Hall conductivity in n-doped GaAs,” Phys. Rev. Lett. 95, 166605 (2005).
[CrossRef]

E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602 (2004).
[CrossRef]

Hamakawa, Y.

K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987).
[CrossRef]

Han, K.

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

Hanke, W.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

Hankiewicz, E. M.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

Harii, K.

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

Hasegawa, Y.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

Hattori, K.

K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987).
[CrossRef]

He, X. W.

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Heffernan, J. F.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Hegarty, J.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures,” Phys. Rev. B 30, 7346–7348 (1984).
[CrossRef]

Henderson, T.

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Herrle, T.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

Hersam, M. C.

R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011).
[CrossRef]

Hertel, D.

A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
[CrossRef]

Hewlett, S. J.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Hey, R.

O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
[CrossRef]

J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005).
[CrossRef]

Higley, K.

B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008).
[CrossRef]

Hillmer, H.

H. Hillmer, A. Forchel, and C. W. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlGaAs quantum wells,” Phys. Rev. B 45, 1240–1245 (1992).
[CrossRef]

Hino, T.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Hirsch, J. E.

J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, 1834–1837 (1999).
[CrossRef]

Hobbs, P. C. D.

P. C. D. Hobbs, Building Electro-Optical Systems, 2nd ed.(Wiley, 2009).

Hoffmann, C.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

Hommel, D.

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

Horowitz, V. R.

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

Hu, Q. O.

E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
[CrossRef]

Hübner, J.

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

Hughes, J. L. P.

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Hvam, J. M.

V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995).
[CrossRef]

J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
[CrossRef]

H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992).
[CrossRef]

Ieda, J.

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

Iikawa, F.

O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
[CrossRef]

Imamura, H.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

Inoue, J.

J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Suppression of the persistent spin Hall current by defect scattering,” Phys. Rev. B 70, 041303 (2004).
[CrossRef]

Ishibashi, A.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Ivchenko, E. L.

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
[CrossRef]

Jedema, F. J.

F. J. Jedema, A. T. Filip, and B. J. van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410, 345–348 (2001).
[CrossRef]

Jones, D. J.

T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004).
[CrossRef]

Jordan, C.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Jungwirth, T.

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005).
[CrossRef]

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

Kaestner, B.

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005).
[CrossRef]

Kane, C. L.

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[CrossRef]

Kato, Y. K.

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004).
[CrossRef]

Kayanuma, K.

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Keller, S.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

Keller, U.

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
[CrossRef]

Kempf, K.

F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985).
[CrossRef]

Kerachian, Y.

Y. Kerachian, P. A. Marsden, and H. M. van Driel, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B 75, 125205 (2007).
[CrossRef]

Y. Kerachian, H. M. van Driel, and A. L. Smirl, “Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents,” Phys. Rev. B 75, 125206 (2007).
[CrossRef]

Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004).
[CrossRef]

Ketterl, H.

S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett. 67, 1113–1115 (1995).
[CrossRef]

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

Kikkawa, J. M.

I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
[CrossRef]

J. M. Kikkawa and D. D. Awschalom, “Lateral drag of spin coherence in gallium arsenide,” Nature 397, 139–141 (1999).
[CrossRef]

Kimura, T.

T. Yang, T. Kimura, and Y. Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nat. Phys. 4, 851–854 (2008).
[CrossRef]

T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
[CrossRef]

Kirshenbaum, K.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

Klein, M. V.

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Klem, J.

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Klingshirn, C.

H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992).
[CrossRef]

F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985).
[CrossRef]

Klude, M.

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

Koch, S. W.

H. T. Duc, T. Meier, and S. W. Koch, “Microscopic analysis of the coherent optical generation and the decay of charge and spin currents in semiconductor heterostructures,” Phys. Rev. Lett. 95, 086606 (2005).
[CrossRef]

Koltover, I.

J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
[CrossRef]

König, M.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

Koralek, J. D.

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

Koshibae, W.

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

Kostoulas, Y.

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

Kuan, C. H.

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

Kumar, N.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

Lau, W. H.

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

Lee, C. H.

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[CrossRef]

Levi, D.

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Li, X.

Liang, C. T.

K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
[CrossRef]

Lienau, C.

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

Liu, H. C.

E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

Liu, R. B.

J. Wang, B. F. Zhu, and R. B. Liu, “Second-order nonlinear optical effects of spin currents,” Phys. Rev. Lett. 104, 256601 (2010).
[CrossRef]

Logue, F. P.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Loh, K. P.

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
[CrossRef]

Loren, E.

E. Loren, H. Zhao, and A. L. Smirl, “All-optical injection and detection of ballistic charge currents in germanium,” J. Appl. Phys. 108, 083111 (2010).
[CrossRef]

Loren, E. J.

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008).
[CrossRef]

H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006).
[CrossRef]

Loss, D.

J. Schliemann and D. Loss, “Dissipation effects in spin-Hall transport of electrons and holes,” Phys. Rev. B 69, 165315 (2004).
[CrossRef]

Lou, X.

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

Lyssenko, V. G.

V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995).
[CrossRef]

J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
[CrossRef]

Ma, M.

S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004).
[CrossRef]

MacDonald, A. H.

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

Mack, S.

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
[CrossRef]

Maekawa, S.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
[CrossRef]

Majumder, F. A.

F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985).
[CrossRef]

Malajovich, I.

I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001).
[CrossRef]

I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
[CrossRef]

Malyarchuk, V.

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

Marcus, C. M.

S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003).
[CrossRef]

Marmet, L.

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

Marsden, P. A.

Y. Kerachian, P. A. Marsden, and H. M. van Driel, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B 75, 125205 (2007).
[CrossRef]

Marshall, T.

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

Marti, D. H.

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Optical injection of charge current in quantum wires: oscillations induced by excitonic effects,” Phys. Rev. B 72, 075357 (2005).
[CrossRef]

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Dynamics of optical injection of charge and spin currents in quantum wells,” Phys. Rev. B 69, 035335 (2004).
[CrossRef]

Mason, N. J.

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

Matsukura, F.

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Matsusue, T.

H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B 49, 14523–14530 (1994).
[CrossRef]

McCabe, E. M.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Meerholz, K.

A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
[CrossRef]

Meier, T.

H. T. Duc, T. Meier, and S. W. Koch, “Microscopic analysis of the coherent optical generation and the decay of charge and spin currents in semiconductor heterostructures,” Phys. Rev. Lett. 95, 086606 (2005).
[CrossRef]

Mele, E. J.

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[CrossRef]

Menard, J. M.

C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
[CrossRef]

Mihaychuk, J. G.

J. Bloch, J. G. Mihaychuk, and H. M. van Driel, “Electron photoinjection from silicon to ultrathin SiO2 films via ambient oxygen,” Phys. Rev. Lett. 77, 920–923 (1996).
[CrossRef]

Mishchenko, E. G.

E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602 (2004).
[CrossRef]

Mishra, U. K.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

Mitani, S.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

Mizeikis, V.

V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995).
[CrossRef]

Möck, P.

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

Molenkamp, L. W.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Suppression of the persistent spin Hall current by defect scattering,” Phys. Rev. B 70, 041303 (2004).
[CrossRef]

Moore, J. E.

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

Mori, T.

K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987).
[CrossRef]

Morier-Genoud, F.

B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
[CrossRef]

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

Morkoç, H.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992).
[CrossRef]

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Mower, M.

H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79, 115321 (2009).
[CrossRef]

Murakami, S.

S. Murakami, N. Nagaosa, and S. C. Zhang, “Spin-Hall insulator,” Phys. Rev. Lett. 93, 156804 (2004).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301, 1348–1351 (2003).
[CrossRef]

Myers, R. C.

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004).
[CrossRef]

Nagaosa, N.

S. Murakami, N. Nagaosa, and S. C. Zhang, “Spin-Hall insulator,” Phys. Rev. Lett. 93, 156804 (2004).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301, 1348–1351 (2003).
[CrossRef]

Najmaie, A.

E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
[CrossRef]

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

A. Najmaie, R. D. R. Bhat, and J. E. Sipe, “All-optical injection and control of spin and electrical currents in quantum wells,” Phys. Rev. B 68, 165348 (2003).
[CrossRef]

Nakano, K.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Neamen, D. A.

D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2002).

Nechay, B. A.

B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
[CrossRef]

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

Nemec, P.

Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004).
[CrossRef]

Nestle, N.

D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
[CrossRef]

Newson, R. W.

R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011).
[CrossRef]

R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
[CrossRef]

Nicholas, R. J.

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

Nikolic, B. K.

B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005).
[CrossRef]

Nitta, J.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

Niu, Q.

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

Norris, T. B.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

Novik, E. G.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

Nurmikko, A.

A. Vertikov, I. Ozden, and A. Nurmikko, “Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy,” Appl. Phys. Lett. 74, 850–852 (1999).
[CrossRef]

Oestreich, M.

D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
[CrossRef]

Ohno, H.

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Ohno, Y.

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Oka, Y.

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Okamoto, H.

K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987).
[CrossRef]

Orenstein, J.

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

Otani, Y.

T. Yang, T. Kimura, and Y. Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nat. Phys. 4, 851–854 (2008).
[CrossRef]

T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
[CrossRef]

Ozden, I.

A. Vertikov, I. Ozden, and A. Nurmikko, “Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy,” Appl. Phys. Lett. 74, 850–852 (1999).
[CrossRef]

Paglione, J.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

Palmstrom, C. J.

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

Palmstrøm, C. J.

E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
[CrossRef]

Pantke, K.-H.

J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
[CrossRef]

H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992).
[CrossRef]

Pashley, M.

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

Peng, Y. H.

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

Perel, V. I.

M. I. D’yakonov and V. I. Perel, “Possibility of orienting electron spins with current,” JETP Lett. 13, 467–469 (1971).

Petruzzello, J.

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

Pipis, J. A.

Ploog, K. H.

J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005).
[CrossRef]

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

Potok, R. M.

S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003).
[CrossRef]

Preston, J. S.

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

Prettl, W.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
[CrossRef]

Pronin, K. A.

K. A. Pronin and A. D. Bandrauk, “Coherent control of electric currents in superlattices and molecular wires: effect of relaxation,” Phys. Rev. B 69, 195308 (2004).
[CrossRef]

Qi, J.

J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
[CrossRef]

Quraishi, Q.

Rashba, E. I.

H. Engel, B. I. Halperin, and E. I. Rashba, “Theory of spin Hall conductivity in n-doped GaAs,” Phys. Rev. Lett. 95, 166605 (2005).
[CrossRef]

Razbirin, B. S.

J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
[CrossRef]

Rees, P.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Rinner, F.

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

Rioux, J.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

Roos, P.

Roos, P. A.

Roth, A.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

Roukes, M. L.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Rudolph, J.

O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
[CrossRef]

Rühle, W. W.

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
[CrossRef]

Ruzicka, B. A.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

L. K. Werake, B. A. Ruzicka, and H. Zhao, “Observation of intrinsic inverse spin Hall effect,” Phys. Rev. Lett. 106, 107205 (2011).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010).
[CrossRef]

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
[CrossRef]

B. A. Ruzicka and H. Zhao, “Power dependence of pure spin current injection by quantum interference,” Phys. Rev. B 79, 155204 (2009).
[CrossRef]

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008).
[CrossRef]

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

Saitoh, E.

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

Sakaki, H.

H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B 49, 14523–14530 (1994).
[CrossRef]

Samarth, N.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001).
[CrossRef]

I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
[CrossRef]

Samassekou, H.

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010).
[CrossRef]

Sames, C.

C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
[CrossRef]

Sanada, H.

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

Santos, P. V.

O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
[CrossRef]

J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005).
[CrossRef]

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

Sarma, S. Das

I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Sato, T.

T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
[CrossRef]

Schaefer, A. C.

A. C. Schaefer, J. Erland, and D. G. Steel, “Nondiffusive excitonic transport in GaAs and the effects of momentum scattering,” Phys. Rev. B 54, R11046–R11049 (1996).
[CrossRef]

Schertel, A.

B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
[CrossRef]

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

Schliemann, J.

J. Schliemann and D. Loss, “Dissipation effects in spin-Hall transport of electrons and holes,” Phys. Rev. B 69, 165315 (2004).
[CrossRef]

Schneider, P.

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

Schuh, D.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

Schwab, H.

H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992).
[CrossRef]

Seki, T.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

Serbenta, A.

A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
[CrossRef]

Shah, J.

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996).

Shalygin, V. A.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

Shen, B.

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007).
[CrossRef]

K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

Shen, S. Q.

S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004).
[CrossRef]

Sheng, D. N.

L. Sheng, D. N. Sheng, and C. S. Ting, “Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder,” Phys. Rev. Lett. 94, 016602 (2005).
[CrossRef]

Sheng, L.

L. Sheng, D. N. Sheng, and C. S. Ting, “Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder,” Phys. Rev. Lett. 94, 016602 (2005).
[CrossRef]

Sherman, E. Y.

E. Y. Sherman, R. M. Abrarov, and J. E. Sipe, “Mode coupling and evolution in broken-symmetry plasmas,” Phys. Rev. B 80, 161308 (2009).
[CrossRef]

E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
[CrossRef]

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

Shytov, A. V.

E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602 (2004).
[CrossRef]

Siegner, U.

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
[CrossRef]

Sih, V.

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

Sinitsyn, N. A.

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

Sinova, J.

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005).
[CrossRef]

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005).
[CrossRef]

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

Sipe, J.

Sipe, J. E.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

E. Y. Sherman, R. M. Abrarov, and J. E. Sipe, “Mode coupling and evolution in broken-symmetry plasmas,” Phys. Rev. B 80, 161308 (2009).
[CrossRef]

E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
[CrossRef]

P. A. Roos, X. Li, J. A. Pipis, T. M. Fortier, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Characterization of carrier-envelope phase-sensitive photocurrent injection in a semiconductor,” J. Opt. Soc. Am. B 22, 362–368 (2005).
[CrossRef]

T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

A. Najmaie, R. D. R. Bhat, and J. E. Sipe, “All-optical injection and control of spin and electrical currents in quantum wells,” Phys. Rev. B 68, 165348 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
[CrossRef]

R. D. R. Bhat and J. E. Sipe, “Optically injected spin currents in semiconductors,” Phys. Rev. Lett. 85, 5432–5435 (2000).
[CrossRef]

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

C. Aversa and J. E. Sipe, “Coherent current control in semiconductors: a susceptibility perspective,” IEEE J. Quantum Electron. 32, 1570–1573 (1996).
[CrossRef]

Smirl, A. L.

E. Loren, H. Zhao, and A. L. Smirl, “All-optical injection and detection of ballistic charge currents in germanium,” J. Appl. Phys. 108, 083111 (2010).
[CrossRef]

H. Zhao and A. L. Smirl, “Injection and detection of ballistic electrical currents in silicon,” Appl. Phys. Lett. 97, 212106 (2010).
[CrossRef]

C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008).
[CrossRef]

H. Zhao, A. L. Smirl, and H. M. van Driel, “Temporally and spatially resolved ballistic pure spin transport,” Phys. Rev. B 75, 075305 (2007).
[CrossRef]

Y. Kerachian, H. M. van Driel, and A. L. Smirl, “Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents,” Phys. Rev. B 75, 125206 (2007).
[CrossRef]

H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006).
[CrossRef]

E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
[CrossRef]

Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004).
[CrossRef]

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
[CrossRef]

Smith, D. L.

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

S. A. Crooker and D. L. Smith, “Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields,” Phys. Rev. Lett. 94, 236601 (2005).
[CrossRef]

Smith, L. M.

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Smith, R. P.

Snoeks, E.

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

Sogawa, T.

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

T. Sogawa, H. Ando, and S. Ando, “Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires,” Phys. Rev. B 61, 5535–5539 (2000).
[CrossRef]

Souma, S.

B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005).
[CrossRef]

Spasenovic, M.

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Stahl, J.

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

Steel, D. G.

A. C. Schaefer, J. Erland, and D. G. Steel, “Nondiffusive excitonic transport in GaAs and the effects of momentum scattering,” Phys. Rev. B 54, R11046–R11049 (1996).
[CrossRef]

Stephens, J.

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

Stern, N. P.

N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
[CrossRef]

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

Steuerman, D. W.

N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
[CrossRef]

Stevens, M. J.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
[CrossRef]

Stoicheff, B. P.

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

Stotz, J. A. H.

J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005).
[CrossRef]

Sturge, M. D.

J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures,” Phys. Rev. B 30, 7346–7348 (1984).
[CrossRef]

Sun, C. K.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

Sun, D.

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

Swoboda, H.-E.

F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985).
[CrossRef]

Syers, P.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

Tai, S. P.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

Takahashi, S.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
[CrossRef]

Takanashi, K.

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

Talalaev, V.

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

Tang, C. G.

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Tang, N.

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

Tang, Y. Q.

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007).
[CrossRef]

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
[CrossRef]

Taniguchi, S.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

Tarasenko, S. A.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

Theis, W. M.

J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
[CrossRef]

Ting, C. S.

L. Sheng, D. N. Sheng, and C. S. Ting, “Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder,” Phys. Rev. Lett. 94, 016602 (2005).
[CrossRef]

Tinkham, M.

S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall effect,” Nature 442, 176–179 (2006).
[CrossRef]

Tomm, J. W.

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

Treger, D. M.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Tu, C. W.

H. Hillmer, A. Forchel, and C. W. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlGaAs quantum wells,” Phys. Rev. B 45, 1240–1245 (1992).
[CrossRef]

Uchida, K.

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

Umansky, V.

S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003).
[CrossRef]

Val’dner, V.

O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009).
[CrossRef]

Valenzuela, S. O.

S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall effect,” Nature 442, 176–179 (2006).
[CrossRef]

van Driel, H. M.

R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011).
[CrossRef]

C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
[CrossRef]

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008).
[CrossRef]

H. Zhao, A. L. Smirl, and H. M. van Driel, “Temporally and spatially resolved ballistic pure spin transport,” Phys. Rev. B 75, 075305 (2007).
[CrossRef]

L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Y. Kerachian, P. A. Marsden, and H. M. van Driel, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B 75, 125205 (2007).
[CrossRef]

Y. Kerachian, H. M. van Driel, and A. L. Smirl, “Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents,” Phys. Rev. B 75, 125206 (2007).
[CrossRef]

H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006).
[CrossRef]

E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
[CrossRef]

Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004).
[CrossRef]

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
[CrossRef]

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

D. Cote and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

J. Bloch, J. G. Mihaychuk, and H. M. van Driel, “Electron photoinjection from silicon to ultrathin SiO2 films via ambient oxygen,” Phys. Rev. Lett. 77, 920–923 (1996).
[CrossRef]

van Wees, B. J.

F. J. Jedema, A. T. Filip, and B. J. van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410, 345–348 (2001).
[CrossRef]

Venkatesan, A.

S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
[CrossRef]

Vertikov, A.

A. Vertikov, I. Ozden, and A. Nurmikko, “Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy,” Appl. Phys. Lett. 74, 850–852 (1999).
[CrossRef]

Vignale, G.

H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79, 115321 (2009).
[CrossRef]

von Molnar, S.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Vorobjev, L. E.

S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
[CrossRef]

Wake, D. R.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992).
[CrossRef]

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Wang, J.

J. Wang, B. F. Zhu, and R. B. Liu, “Second-order nonlinear optical effects of spin currents,” Phys. Rev. Lett. 104, 256601 (2010).
[CrossRef]

Wang, S.

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
[CrossRef]

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

Wang, Z. G.

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Wasilewski, Z. R.

E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

Watson, S. K.

S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003).
[CrossRef]

Weber, C. P.

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

Wegscheider, W.

S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
[CrossRef]

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

Wei, C. M.

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

Weintrub, B.

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

Weiss, D.

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

Werake, L. K.

L. K. Werake, B. A. Ruzicka, and H. Zhao, “Observation of intrinsic inverse spin Hall effect,” Phys. Rev. Lett. 106, 107205 (2011).
[CrossRef]

L. K. Werake and H. Zhao, “Observation of second-harmonic generation induced by pure spin currents,” Nat. Phys. 6, 875–878(2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
[CrossRef]

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010).
[CrossRef]

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008).
[CrossRef]

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

Wieck, A. D.

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

Wolf, S. A.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Wolfe, J. P.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992).
[CrossRef]

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

Wu, J. Z.

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

Wunderlich, J.

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005).
[CrossRef]

Xiang, G.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

Xie, X. C.

S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004).
[CrossRef]

Xu, F. J.

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Xu, G. W.

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

Yang, T.

T. Yang, T. Kimura, and Y. Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nat. Phys. 4, 851–854 (2008).
[CrossRef]

Yang, Z.

S. Zhang and Z. Yang, “Intrinsic spin and orbital angular momentum Hall effect,” Phys. Rev. Lett. 94, 066602 (2005).
[CrossRef]

Yang, Z. J.

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

Yeganeh, M. S.

J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
[CrossRef]

Yin, C. M.

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Yodh, A. G.

J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
[CrossRef]

Yoon, H. W.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992).
[CrossRef]

Yu, W.

S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
[CrossRef]

Zarbo, L. P.

B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005).
[CrossRef]

Zhang, B.

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

Zhang, F. C.

S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004).
[CrossRef]

Zhang, G. Y.

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

Zhang, S.

S. Zhang and Z. Yang, “Intrinsic spin and orbital angular momentum Hall effect,” Phys. Rev. Lett. 94, 066602 (2005).
[CrossRef]

Zhang, S. C.

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

B. A. Bernevig and S. C. Zhang, “Intrinsic spin Hall effect in the two-dimensional hole gas,” Phys. Rev. Lett. 95, 016801 (2005).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Spin-Hall insulator,” Phys. Rev. Lett. 93, 156804 (2004).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301, 1348–1351 (2003).
[CrossRef]

Zhang, S. F.

S. F. Zhang, “Spin Hall effect in the presence of spin diffusion,” Phys. Rev. Lett. 85, 393–396 (2000).
[CrossRef]

Zhang, S. K.

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

Zhao, H.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

L. K. Werake, B. A. Ruzicka, and H. Zhao, “Observation of intrinsic inverse spin Hall effect,” Phys. Rev. Lett. 106, 107205 (2011).
[CrossRef]

H. Zhao and A. L. Smirl, “Injection and detection of ballistic electrical currents in silicon,” Appl. Phys. Lett. 97, 212106 (2010).
[CrossRef]

L. K. Werake and H. Zhao, “Observation of second-harmonic generation induced by pure spin currents,” Nat. Phys. 6, 875–878(2010).
[CrossRef]

E. Loren, H. Zhao, and A. L. Smirl, “All-optical injection and detection of ballistic charge currents in germanium,” J. Appl. Phys. 108, 083111 (2010).
[CrossRef]

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
[CrossRef]

H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79, 115321 (2009).
[CrossRef]

B. A. Ruzicka and H. Zhao, “Power dependence of pure spin current injection by quantum interference,” Phys. Rev. B 79, 155204 (2009).
[CrossRef]

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008).
[CrossRef]

H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008).
[CrossRef]

H. Zhao, “Temperature dependence of ambipolar diffusion in silicon on insulator,” Appl. Phys. Lett. 92, 112104 (2008).
[CrossRef]

H. Zhao, A. L. Smirl, and H. M. van Driel, “Temporally and spatially resolved ballistic pure spin transport,” Phys. Rev. B 75, 075305 (2007).
[CrossRef]

H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006).
[CrossRef]

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

Zhu, B. F.

J. Wang, B. F. Zhu, and R. B. Liu, “Second-order nonlinear optical effects of spin currents,” Phys. Rev. Lett. 104, 256601 (2010).
[CrossRef]

Zhu, M.

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

Žutic, I.

I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Appl. Phys. Lett.

K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987).
[CrossRef]

B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999).
[CrossRef]

H. Zhao, “Temperature dependence of ambipolar diffusion in silicon on insulator,” Appl. Phys. Lett. 92, 112104 (2008).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010).
[CrossRef]

A. Vertikov, I. Ozden, and A. Nurmikko, “Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy,” Appl. Phys. Lett. 74, 850–852 (1999).
[CrossRef]

V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002).
[CrossRef]

L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999).
[CrossRef]

S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665–667 (1990).
[CrossRef]

D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998).
[CrossRef]

H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002).
[CrossRef]

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

H. Zhao and A. L. Smirl, “Injection and detection of ballistic electrical currents in silicon,” Appl. Phys. Lett. 97, 212106 (2010).
[CrossRef]

E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999).
[CrossRef]

E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009).
[CrossRef]

S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000).
[CrossRef]

C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007).
[CrossRef]

K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007).
[CrossRef]

X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007).
[CrossRef]

Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007).
[CrossRef]

J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett. 67, 1113–1115 (1995).
[CrossRef]

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000).
[CrossRef]

IEEE J. Quantum Electron.

C. Aversa and J. E. Sipe, “Coherent current control in semiconductors: a susceptibility perspective,” IEEE J. Quantum Electron. 32, 1570–1573 (1996).
[CrossRef]

D. Cote and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

J. Appl. Phys.

H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008).
[CrossRef]

M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003).
[CrossRef]

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997).
[CrossRef]

E. Loren, H. Zhao, and A. L. Smirl, “All-optical injection and detection of ballistic charge currents in germanium,” J. Appl. Phys. 108, 083111 (2010).
[CrossRef]

Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

M. I. D’yakonov and V. I. Perel, “Possibility of orienting electron spins with current,” JETP Lett. 13, 467–469 (1971).

O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009).
[CrossRef]

Nano Lett.

R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008).
[CrossRef]

D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010).
[CrossRef]

Nat. Mater.

J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005).
[CrossRef]

T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008).
[CrossRef]

Nat. Phys.

S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006).
[CrossRef]

T. Yang, T. Kimura, and Y. Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nat. Phys. 4, 851–854 (2008).
[CrossRef]

C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010).
[CrossRef]

V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005).
[CrossRef]

N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

L. K. Werake and H. Zhao, “Observation of second-harmonic generation induced by pure spin currents,” Nat. Phys. 6, 875–878(2010).
[CrossRef]

Nature

C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005).
[CrossRef]

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009).
[CrossRef]

J. M. Kikkawa and D. D. Awschalom, “Lateral drag of spin coherence in gallium arsenide,” Nature 397, 139–141 (1999).
[CrossRef]

I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001).
[CrossRef]

S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall effect,” Nature 442, 176–179 (2006).
[CrossRef]

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008).
[CrossRef]

F. J. Jedema, A. T. Filip, and B. J. van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410, 345–348 (2001).
[CrossRef]

New J. Phys.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008).
[CrossRef]

B. A. Ruzicka and H. Zhao, “Power dependence of pure spin current injection by quantum interference,” Phys. Rev. B 79, 155204 (2009).
[CrossRef]

H. Zhao, A. L. Smirl, and H. M. van Driel, “Temporally and spatially resolved ballistic pure spin transport,” Phys. Rev. B 75, 075305 (2007).
[CrossRef]

R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011).
[CrossRef]

C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

T. Sogawa, H. Ando, and S. Ando, “Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires,” Phys. Rev. B 61, 5535–5539 (2000).
[CrossRef]

J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures,” Phys. Rev. B 30, 7346–7348 (1984).
[CrossRef]

H. Hillmer, A. Forchel, and C. W. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlGaAs quantum wells,” Phys. Rev. B 45, 1240–1245 (1992).
[CrossRef]

H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B 49, 14523–14530 (1994).
[CrossRef]

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
[CrossRef]

B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010).
[CrossRef]

H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79, 115321 (2009).
[CrossRef]

H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992).
[CrossRef]

J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993).
[CrossRef]

V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995).
[CrossRef]

A. C. Schaefer, J. Erland, and D. G. Steel, “Nondiffusive excitonic transport in GaAs and the effects of momentum scattering,” Phys. Rev. B 54, R11046–R11049 (1996).
[CrossRef]

F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985).
[CrossRef]

L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988).
[CrossRef]

L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989).
[CrossRef]

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992).
[CrossRef]

M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999).
[CrossRef]

K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007).
[CrossRef]

A. Najmaie, R. D. R. Bhat, and J. E. Sipe, “All-optical injection and control of spin and electrical currents in quantum wells,” Phys. Rev. B 68, 165348 (2003).
[CrossRef]

E. Y. Sherman, R. M. Abrarov, and J. E. Sipe, “Mode coupling and evolution in broken-symmetry plasmas,” Phys. Rev. B 80, 161308 (2009).
[CrossRef]

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Optical injection of charge current in quantum wires: oscillations induced by excitonic effects,” Phys. Rev. B 72, 075357 (2005).
[CrossRef]

Y. Kerachian, P. A. Marsden, and H. M. van Driel, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B 75, 125205 (2007).
[CrossRef]

Y. Kerachian, H. M. van Driel, and A. L. Smirl, “Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents,” Phys. Rev. B 75, 125206 (2007).
[CrossRef]

D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Dynamics of optical injection of charge and spin currents in quantum wells,” Phys. Rev. B 69, 035335 (2004).
[CrossRef]

K. A. Pronin and A. D. Bandrauk, “Coherent control of electric currents in superlattices and molecular wires: effect of relaxation,” Phys. Rev. B 69, 195308 (2004).
[CrossRef]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[CrossRef]

J. Schliemann and D. Loss, “Dissipation effects in spin-Hall transport of electrons and holes,” Phys. Rev. B 69, 165315 (2004).
[CrossRef]

J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Suppression of the persistent spin Hall current by defect scattering,” Phys. Rev. B 70, 041303 (2004).
[CrossRef]

Phys. Rev. Lett.

T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007).
[CrossRef]

S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009).
[CrossRef]

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004).
[CrossRef]

E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602 (2004).
[CrossRef]

L. Sheng, D. N. Sheng, and C. S. Ting, “Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder,” Phys. Rev. Lett. 94, 016602 (2005).
[CrossRef]

C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
[CrossRef]

S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004).
[CrossRef]

S. Zhang and Z. Yang, “Intrinsic spin and orbital angular momentum Hall effect,” Phys. Rev. Lett. 94, 066602 (2005).
[CrossRef]

B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005).
[CrossRef]

B. A. Bernevig and S. C. Zhang, “Intrinsic spin Hall effect in the two-dimensional hole gas,” Phys. Rev. Lett. 95, 016801 (2005).
[CrossRef]

H. Engel, B. I. Halperin, and E. I. Rashba, “Theory of spin Hall conductivity in n-doped GaAs,” Phys. Rev. Lett. 95, 166605 (2005).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Spin-Hall insulator,” Phys. Rev. Lett. 93, 156804 (2004).
[CrossRef]

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005).
[CrossRef]

E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010).
[CrossRef]

H. T. Duc, T. Meier, and S. W. Koch, “Microscopic analysis of the coherent optical generation and the decay of charge and spin currents in semiconductor heterostructures,” Phys. Rev. Lett. 95, 086606 (2005).
[CrossRef]

S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003).
[CrossRef]

J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, 1834–1837 (1999).
[CrossRef]

S. F. Zhang, “Spin Hall effect in the presence of spin diffusion,” Phys. Rev. Lett. 85, 393–396 (2000).
[CrossRef]

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[CrossRef]

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef]

J. Bloch, J. G. Mihaychuk, and H. M. van Driel, “Electron photoinjection from silicon to ultrathin SiO2 films via ambient oxygen,” Phys. Rev. Lett. 77, 920–923 (1996).
[CrossRef]

J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993).
[CrossRef]

A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009).
[CrossRef]

J. Wang, B. F. Zhu, and R. B. Liu, “Second-order nonlinear optical effects of spin currents,” Phys. Rev. Lett. 104, 256601 (2010).
[CrossRef]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[CrossRef]

T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001).
[CrossRef]

I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000).
[CrossRef]

S. A. Crooker and D. L. Smith, “Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields,” Phys. Rev. Lett. 94, 236601 (2005).
[CrossRef]

H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006).
[CrossRef]

L. K. Werake, B. A. Ruzicka, and H. Zhao, “Observation of intrinsic inverse spin Hall effect,” Phys. Rev. Lett. 106, 107205 (2011).
[CrossRef]

E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997).
[CrossRef]

T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004).
[CrossRef]

R. D. R. Bhat and J. E. Sipe, “Optically injected spin currents in semiconductors,” Phys. Rev. Lett. 85, 5432–5435 (2000).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef]

J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003).
[CrossRef]

S. G. Carter, Z. Chen, and S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97, 136602 (2006).
[CrossRef]

C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007).
[CrossRef]

V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006).
[CrossRef]

N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006).
[CrossRef]

O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007).
[CrossRef]

Rev. Mod. Phys.

I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Science

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004).
[CrossRef]

S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005).
[CrossRef]

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301, 1348–1351 (2003).
[CrossRef]

Solid State Commun.

E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006).
[CrossRef]

Other

P. C. D. Hobbs, Building Electro-Optical Systems, 2nd ed.(Wiley, 2009).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).

D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2002).

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

QUIC technique to inject ballistic currents. (a) Two x^-polarized laser pulses with angular frequencies of ω and 2ω inject electrons (e) and holes (h) into the conduction and the valence bands by simultaneous two-photon absorption of the ω pulse and one-photon absorption of the 2ω pulse. Electrons are excited with an average velocity along the x^ direction as a result of the quantum interference between the two transition amplitudes. Holes are injected with an average velocity along the opposite direction. (b) The x^-polarized ω pulse and y^-polarized 2ω pulse excite spin-up electrons with an average velocity along x^, with an equal number of spin-down electrons with opposite average velocity. Hence, a pure spin current along x^ is injected. (c) Two circularly polarized pulses excite spin-polarized electrons with an average velocity along a direction that is determined by the relative phase of the two pulses. A spin-polarized charge current is injected. In panels (b) and (c), the holes are not plotted for clarity.

Fig. 2.
Fig. 2.

Derivative-detection scheme to spatially resolve ballistic charge [(a), (b)] and spin [(c), (d)] currents. In a charge current, electrons with a Gaussian spatial profile [N(0), solid line in (a)] of width W and height H are injected with an average velocity along x^. After a short period of time, τ, the profile has moved a distance d to a new position [N(τ), dashed line]. The difference of the two profiles [ΔN, solid line in (b)] has a derivativelike profile with spatial features on the order of W and hence can be spatially resolved. From ΔN, W, and H, one can deduce d. When a pure spin current is injected, spin-up [dashed line in (c)] and spin-down (solid line) electrons separate, resulting in a derivativelike spin density profile [S, solid line in (d)].

Fig. 3.
Fig. 3.

Experiment setup to inject ballistic charge and spin currents by the QUIC technique and spatially and temporally resolve the current dynamics.

Fig. 4.
Fig. 4.

(a) Profile of N measured by scanning the probe spot in the xy plane with a probe delay of 0.5 ps. The sample temperature is 10 K, and the peak carrier density is 6×1016cm3. (b), (c) Spin density (S) and electron accumulation (ΔN) measured by scanning the probe spot along the horizontal line and the vertical line, respectively. (d) Deduced Δx (solid squares) and Δy (solid circles) as a function of the probe delay.

Fig. 5.
Fig. 5.

Spatially and temporally resolved ballistic spin-polarized charge current injected by the QUIC technique in a 400 nm bulk GaAs sample at room temperature. (a), (b) Spatial profiles of N [squares in (a)], ΔN [(circles in (a)], S [squares in (b)], and ΔS [circles in (b)] measured by scanning the probe spot along x^ with a fixed probe delay of 0.3 ps. (c) Position of the center of the electron density profile as a function of the probe delay.

Fig. 6.
Fig. 6.

Current injection efficiency as a function of Nω/N2ω. In each set of measurements, the total electron density is kept constant when nω/n2ω is varied. The squares, circles, and triangles show data measured from a 400 nm bulk GaAs sample at room temperature, with the total carrier density of 1.4, 2.5, and 5.5×1017cm3, respectively. The diamonds represent data measured from a multiple-quantum-well sample at 80 K, with total electron density of 1.0×1017cm3.

Fig. 7.
Fig. 7.

Experimental setup used to inject ballistic pure spin currents by the QUIC technique and observe the induced SHG.

Fig. 8.
Fig. 8.

SHG induced by the pure spin current.

Fig. 9.
Fig. 9.

SHG induced by the pure charge current.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P=|A1+A2|2=|A1|2+|A2|2+A1A2*+A1*A2.
dW=0.707hH.
I=(cϵ0/2)(ELO+EJ)2,
I=ILO+ΔI,
ILO=(cϵ0/2)ELO2
ΔI=(cϵ0/2)(2ELOEJ+EJ2)
ELO=ALOEp2,
ALO2=(cϵ0/2)ILOIp2,
EJ=AJEp2,
AJ=πLχJ(2)n2λ,
ILO=(cϵ0/2)ALO2Ep4
ΔI=(cϵ0/2)(2ALOAJ+AJ2)Ep4(cϵ0/2)(2ALOAJ)Ep4,
ΔIILO=2AJALO.
χJ(2)=n2λ2πL(ΔIILO)(cϵ02)1/2ILO1/2Ip.
IPf1τ1πw2,

Metrics