Abstract

We study the intensity dependence of single-photon emission from a single semiconductor quantum dot after pulsed excitation. A semiconductor model is introduced that accounts for various configurations resulting from the occupation of the localized single-particle states with carriers. A detailed account is given on how the photon correlation dynamics and the antibunching can be calculated. We predict a novel effect, where, for strong excitation, the formation of multiexciton configurations during the excitation pulse leads to an improved antibunching signature in g(2).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
    [CrossRef]
  2. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [CrossRef]
  3. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef]
  4. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
    [CrossRef]
  5. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
    [CrossRef]
  6. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
    [CrossRef]
  7. T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
    [CrossRef]
  8. J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327(2005).
    [CrossRef]
  9. S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
    [CrossRef]
  10. C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express 19, 14370–14388 (2011).
    [CrossRef]
  11. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
    [CrossRef]
  12. F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
    [CrossRef]
  13. N. Baer, C. Gies, J. Wiersig, and F. Jahnke, “Luminescence of a semiconductor quantum dot system,” Eur. Phys. J. B 50, 411–418 (2006).
    [CrossRef]
  14. C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics (Springer, 2004).
  15. P. Michler, Single Semiconductor Quantum Dots, Nanoscience and Technology (Springer, 2009).

2011

2010

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

2009

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

2007

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

2006

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

N. Baer, C. Gies, J. Wiersig, and F. Jahnke, “Luminescence of a semiconductor quantum dot system,” Eur. Phys. J. B 50, 411–418 (2006).
[CrossRef]

2005

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327(2005).
[CrossRef]

2004

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

2002

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

2000

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Amann, M.-C.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Baer, N.

N. Baer, C. Gies, J. Wiersig, and F. Jahnke, “Luminescence of a semiconductor quantum dot system,” Eur. Phys. J. B 50, 411–418 (2006).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Böhm, G.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Dwir, B.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Faist, J.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Farrer, I.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Felici, M.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Finley, J. J.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Florian, M.

Fürst, M.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Gallo, P.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Gardiner, C.

C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics (Springer, 2004).

Gartner, P.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express 19, 14370–14388 (2011).
[CrossRef]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
[CrossRef]

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327(2005).
[CrossRef]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

Gies, C.

Hauke, N.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Hofbauer, F.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Jahnke, F.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express 19, 14370–14388 (2011).
[CrossRef]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express 18, 9909–9921 (2010).
[CrossRef]

N. Baer, C. Gies, J. Wiersig, and F. Jahnke, “Luminescence of a semiconductor quantum dot system,” Eur. Phys. J. B 50, 411–418 (2006).
[CrossRef]

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327(2005).
[CrossRef]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

Kaniber, M.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Kapon, E.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Kurtsiefer, C.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Laucht, A.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Lodahl, P.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

P. Michler, Single Semiconductor Quantum Dots, Nanoscience and Technology (Springer, 2009).

Mohan, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

Nicoll, C. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Nielsen, T. R.

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327(2005).
[CrossRef]

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Perdigues, J.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Perea, J. I.

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Rarity, J. G.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Ritchie, D. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Ritter, S.

Rudra, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Salter, C. L.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Scheidl, T.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Schmitt-Manderbach, T.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Seebeck, J.

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327(2005).
[CrossRef]

Shields, A. J.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Sodnik, Z.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Solomon, G. S.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Stevenson, R. M.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Stobbe, S.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Tejedor, C.

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

Tiefenbacher, F.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Troiani, F.

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

Ursin, R.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Villas-Bôas, J. M.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Vuckovic, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Weier, H.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Weinfurter, H.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Wiersig, J.

N. Baer, C. Gies, J. Wiersig, and F. Jahnke, “Luminescence of a semiconductor quantum dot system,” Eur. Phys. J. B 50, 411–418 (2006).
[CrossRef]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Zeilinger, A.

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Zoller, P.

C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics (Springer, 2004).

Eur. Phys. J. B

N. Baer, C. Gies, J. Wiersig, and F. Jahnke, “Luminescence of a semiconductor quantum dot system,” Eur. Phys. J. B 50, 411–418 (2006).
[CrossRef]

Nat. Photon.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photon. 4, 302–306 (2010).
[CrossRef]

Nature

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Opt. Express

Phys. Rev. B

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327(2005).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

Phys. Rev. Lett.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett. 103, 217402 (2009).
[CrossRef]

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[CrossRef]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Science

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Other

C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics (Springer, 2004).

P. Michler, Single Semiconductor Quantum Dots, Nanoscience and Technology (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic picture of the electronic system and the considered processes acting between them.

Fig. 2.
Fig. 2.

Unnormalized autocorrelation function GI(2)(τ) versus delay-time τ for different excitation powers.

Fig. 3.
Fig. 3.

Time evolution of the 1Xs exciton population for different pump strengths Pmax and a fixed pulse width Δ of 500 ps. The pulse shape is schematically shown as a shaded area and illustrates the time-dependent pump rate Γ(t) introduced in Eq. (1).

Fig. 4.
Fig. 4.

Normalized autocorrelation function at zero-time delay giving a direct measure of the antibunching quality, shown versus pump rate for different relaxation rates (γ12=γ34). The lowest curve corresponds to the parameters used in Figs. 2 and 3.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ddtρ=i[HCoul,ρ]+(i,j)ξγij2(2ai,ξaj,ξρaj,ξai,ξaj,ξai,ξai,ξaj,ξρρaj,ξai,ξai,ξaj,ξ)+ξΓ(t)2(2a4,ξρa4,ξa4,ξa4,ξρρa4,ξa4,ξ)+ξΓ(t)2(2a1,ξρa1,ξa1,ξa1,ξρρa1,ξa1,ξ),
G(2)(t,τ)=σ(t)σ(t+τ)σ(t+τ)σ(t).
ρ˜(τ=0)=σρ(t)σ=n0(t)|0X0X|,
G(2)(t,τ)=σ(τ)σ(τ)ρ˜=Tr{σσρ~(τ)}=n0(t)nt(t+τ).
G(2)(τ)=0TdtG(2)(t,τ).
GI(2)(τ)=0Δdtn0(t)nt(t+τ)
GII(2)(τ)=0Tdtn0(t)n0(t+τT),
g0(2)=dτGI(2)(τ)dτGII(2)(τ).

Metrics