Abstract

We propose here to combine magnetic semiconductors and plasmonic crystals to obtain a new class of devices, in which magneto-optical effects are dramatically enhanced. So far we have studied the two building blocks separately, and we demonstrate here features of these systems that make them appealing for combination. Namely, for magnetic semiconductors we demonstrate efficient tools for manipulating their magnetization. In particular, we show that in paramagnetic (Ga,Mn)As the magnetic ions can be oriented optically. For ferromagnetic (Ga,Mn)As an ultrafast strain pulse moves the magnetization out of its equilibrium position, inducing a subsequent precessional motion about the equilibrium orientation. For plasmonic crystals, on the other hand, we show that the magneto-optical effects are dramatically enhanced in both reflection and transmission. From combining the two systems, we expect to be able to obtain magneto-optical materials that can be controlled efficiently through manipulation of the magnetization of the magnetic semiconductor onto which the plasmonic crystal is deposited.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nat. Mater. 9, 965–974 (2010).
    [CrossRef]
  2. B. P. Zakharchenya and L. V. Korenev, “Integrating magnetism into semiconductor electronics,” Phys. Uspekhi 48, 603–608 (2005).
    [CrossRef]
  3. I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
    [CrossRef]
  4. M. Johnson and M. Spin, Physics of Semiconductors, M. Dyakonov, ed. (Springer, 2008), Ch. 10.
  5. J. Heber, “Plasmonics: surfing the wave,” Nature 461, 720–722 (2009).
    [CrossRef]
  6. A. Polman, “Plasmonics applied,” Science 322, 868–869 (2008).
    [CrossRef]
  7. S. Maier, ed., “Special Issue: Plasmonics and Nanophotonics,” Phys. Stat. Sol. (RRL) 4 (2010).
  8. S. I. Bozhevolnyi, Plasmonics Nanoguides and Circuits (Pan Stanford, 2008).
  9. H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
    [CrossRef]
  10. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
    [CrossRef]
  11. K. Kneipp, “Surface-enhanced Raman scattering,” Physics Today 60(11), 40–46 (2007).
    [CrossRef]
  12. M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999).
    [CrossRef]
  13. A. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol. 19, 1964–1969 (2001).
    [CrossRef]
  14. V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
    [CrossRef]
  15. V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009).
    [CrossRef]
  16. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [CrossRef]
  17. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).
  18. G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
    [CrossRef]
  19. I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
    [CrossRef]
  20. E. L. Ivchenko, “Exchange interaction and scattering of light with reversal of the hole angular momentum at an acceptor in quantum-well structures,” Sov. Phys. Solid State 34, 254–260(1992).
  21. V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
    [CrossRef]
  22. V. F. Sapega, T. Ruf, and M. Cardona, “Spin-flip Raman study of exchange interactions in bulk GaAs:Mn,” Phys. Stat. Sol. B 226, 339–356 (2001).
    [CrossRef]
  23. I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
    [CrossRef]
  24. C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
    [CrossRef]
  25. M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
    [CrossRef]
  26. A. Abragam, The Principles of Nuclear Magnetism (Oxford, 1961), Chap. VIII.
  27. M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
    [CrossRef]
  28. J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009).
    [CrossRef]
  29. M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
    [CrossRef]
  30. U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
    [CrossRef]
  31. M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
    [CrossRef]
  32. A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
    [CrossRef]
  33. C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
    [CrossRef]
  34. S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
    [CrossRef]
  35. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
    [CrossRef]
  36. J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
    [CrossRef]
  37. Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As,” Phys. Rev. Lett. 100, 067202 (2008).
    [CrossRef]
  38. E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
    [CrossRef]
  39. G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
    [CrossRef]
  40. K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
    [CrossRef]
  41. A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
    [CrossRef]
  42. H.-Y. Hao and H. J. Maris, “Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire,” Phys. Rev. B 63, 224301 (2001).
    [CrossRef]
  43. R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
    [CrossRef]
  44. G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
    [CrossRef]
  45. X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
    [CrossRef]
  46. G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994).
    [CrossRef]
  47. O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001).
    [CrossRef]
  48. X. Liu, Y. Sasaki, and J. K. Furdyna, “Ferromagnetic resonance in Ga1−xMnxAs: effects of magnetic anisotropy,” Phys. Rev. B 67, 205204 (2003).
    [CrossRef]
  49. T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
    [CrossRef]
  50. H.-Y. Hao and H. J. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B 64, 064302 (2001).
    [CrossRef]
  51. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
    [CrossRef]
  52. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007).
    [CrossRef]
  53. V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
    [CrossRef]
  54. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
    [CrossRef]
  55. G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible and infrared parts of spectrum,” Sov. Phys. JETP 26, 1080–1085 (1968).
  56. A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).
  57. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
    [CrossRef]
  58. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  59. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  60. V. M. Dubovik and L. A. Tosunyan, “Toroidal moments in the physics of electromagnetic and weak interactions,” Sov. J. Part. Nucl. 14, 504–519 (1983).
  61. A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, “Optical properties of toroidal media,” Proc. SPIE 6728, 67283D (2007).
    [CrossRef]
  62. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
    [CrossRef]
  63. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [CrossRef]
  64. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
    [CrossRef]
  65. M. Neviere, E. Popov, and R. Reinisch, “Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator,” J. Opt. Soc. Am. A 12, 513–523 (1995).
    [CrossRef]
  66. N. Chateau and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
    [CrossRef]
  67. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  68. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A: Pure Appl. Opt. 5, 345–355 (2003).
    [CrossRef]
  69. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  70. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [CrossRef]
  71. M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 38(3), 27–31(2007).
    [CrossRef]
  72. A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009).
    [CrossRef]
  73. A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
    [CrossRef]
  74. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
    [CrossRef]
  75. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
    [CrossRef]
  76. G. S. Krinchik and E. A. Gan’shina, “Quadratic magnetooptical reflection effects in ferromagnets,” Sov. Phys. JETP 38, 983–989 (1974).
  77. C. N. Afonso and F. Briones, “Even magneto-optical effects in ferromagnetic transition metals,” J. Phys. F: Met. Phys. 10, 1253–1260 (1980).
    [CrossRef]
  78. S. V. Halilov and Y. A. Uspenskii, “Effects of degeneracy removal on optical and magneto-optical properties of 3d ferromagnetic metals,” J. Phys. Condens. Matter 4, 1299–1310 (1992).
    [CrossRef]
  79. A. Hessel and A. A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  80. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
    [CrossRef]

2011

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

2010

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
[CrossRef]

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nat. Mater. 9, 965–974 (2010).
[CrossRef]

S. Maier, ed., “Special Issue: Plasmonics and Nanophotonics,” Phys. Stat. Sol. (RRL) 4 (2010).

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

2009

J. Heber, “Plasmonics: surfing the wave,” Nature 461, 720–722 (2009).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009).
[CrossRef]

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[CrossRef]

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009).
[CrossRef]

A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

2008

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
[CrossRef]

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As,” Phys. Rev. Lett. 100, 067202 (2008).
[CrossRef]

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

A. Polman, “Plasmonics applied,” Science 322, 868–869 (2008).
[CrossRef]

2007

K. Kneipp, “Surface-enhanced Raman scattering,” Physics Today 60(11), 40–46 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, “Optical properties of toroidal media,” Proc. SPIE 6728, 67283D (2007).
[CrossRef]

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 38(3), 27–31(2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007).
[CrossRef]

2006

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

2005

B. P. Zakharchenya and L. V. Korenev, “Integrating magnetism into semiconductor electronics,” Phys. Uspekhi 48, 603–608 (2005).
[CrossRef]

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

2004

I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

2003

G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
[CrossRef]

U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
[CrossRef]

X. Liu, Y. Sasaki, and J. K. Furdyna, “Ferromagnetic resonance in Ga1−xMnxAs: effects of magnetic anisotropy,” Phys. Rev. B 67, 205204 (2003).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A: Pure Appl. Opt. 5, 345–355 (2003).
[CrossRef]

2002

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

2001

O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001).
[CrossRef]

H.-Y. Hao and H. J. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B 64, 064302 (2001).
[CrossRef]

H.-Y. Hao and H. J. Maris, “Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire,” Phys. Rev. B 63, 224301 (2001).
[CrossRef]

V. F. Sapega, T. Ruf, and M. Cardona, “Spin-flip Raman study of exchange interactions in bulk GaAs:Mn,” Phys. Stat. Sol. B 226, 339–356 (2001).
[CrossRef]

A. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol. 19, 1964–1969 (2001).
[CrossRef]

2000

T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
[CrossRef]

1999

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999).
[CrossRef]

1995

1994

N. Chateau and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
[CrossRef]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994).
[CrossRef]

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

1992

E. L. Ivchenko, “Exchange interaction and scattering of light with reversal of the hole angular momentum at an acceptor in quantum-well structures,” Sov. Phys. Solid State 34, 254–260(1992).

S. V. Halilov and Y. A. Uspenskii, “Effects of degeneracy removal on optical and magneto-optical properties of 3d ferromagnetic metals,” J. Phys. Condens. Matter 4, 1299–1310 (1992).
[CrossRef]

1983

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).

V. M. Dubovik and L. A. Tosunyan, “Toroidal moments in the physics of electromagnetic and weak interactions,” Sov. J. Part. Nucl. 14, 504–519 (1983).

1980

C. N. Afonso and F. Briones, “Even magneto-optical effects in ferromagnetic transition metals,” J. Phys. F: Met. Phys. 10, 1253–1260 (1980).
[CrossRef]

1974

G. S. Krinchik and E. A. Gan’shina, “Quadratic magnetooptical reflection effects in ferromagnets,” Sov. Phys. JETP 38, 983–989 (1974).

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1968

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible and infrared parts of spectrum,” Sov. Phys. JETP 26, 1080–1085 (1968).

1965

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

1935

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
[CrossRef]

Abe, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999).
[CrossRef]

Abragam, A.

A. Abragam, The Principles of Nuclear Magnetism (Oxford, 1961), Chap. VIII.

Afonso, C. N.

C. N. Afonso and F. Briones, “Even magneto-optical effects in ferromagnetic transition metals,” J. Phys. F: Met. Phys. 10, 1253–1260 (1980).
[CrossRef]

Ahmad, E.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Akimov, A. B.

A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
[CrossRef]

Akimov, A. V.

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

Althammer, M.

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999).
[CrossRef]

Archambault, A.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009).
[CrossRef]

Armstrong, M. R.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Artem’ev, V. A.

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible and infrared parts of spectrum,” Sov. Phys. JETP 26, 1080–1085 (1968).

Astakhov, G. V.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

Belotelov, V. I.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
[CrossRef]

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, “Optical properties of toroidal media,” Proc. SPIE 6728, 67283D (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

Besombes, L.

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

Bezus, E. A.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

Bihler, C.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Bolotin, G.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).

Bombeck, M.

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

Boukari, H.

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, Plasmonics Nanoguides and Circuits (Pan Stanford, 2008).

Brandlmaier, A.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Brandt, M. S.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Briones, F.

C. N. Afonso and F. Briones, “Even magneto-optical effects in ferromagnetic transition metals,” J. Phys. F: Met. Phys. 10, 1253–1260 (1980).
[CrossRef]

Brüggemann, C.

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

Bykov, D. A.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

Campion, R. P.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Cardona, M.

V. F. Sapega, T. Ruf, and M. Cardona, “Spin-flip Raman study of exchange interactions in bulk GaAs:Mn,” Phys. Stat. Sol. B 226, 339–356 (2001).
[CrossRef]

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

Chateau, N.

Chernyshov, A.

M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
[CrossRef]

Chiba, D.

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chung, S.

S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
[CrossRef]

Cibert, J.

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

Cukr, M.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Daeubler, J.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

Das Sarma, S.

I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Däweritz, L.

G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
[CrossRef]

De Ranieri, E.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Dietl, T.

T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nat. Mater. 9, 965–974 (2010).
[CrossRef]

Dobrowolska, M.

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

Doskolovich, L. L.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Dreher, L.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

Druzhinin, A. V.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).

Dubovik, V. M.

V. M. Dubovik and L. A. Tosunyan, “Toroidal moments in the physics of electromagnetic and weak interactions,” Sov. J. Part. Nucl. 14, 504–519 (1983).

Dzhioev, R. I.

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

Edmonds, K. W.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Fabian, J.

I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Fan, S.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Feldman, L. C.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Ferré, J.

G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
[CrossRef]

Foxon, C. T.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999).
[CrossRef]

Fujita, J.

Fukumura, T.

T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
[CrossRef]

Furdyna, J. K.

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
[CrossRef]

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
[CrossRef]

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

X. Liu, Y. Sasaki, and J. K. Furdyna, “Ferromagnetic resonance in Ga1−xMnxAs: effects of magnetic anisotropy,” Phys. Rev. B 67, 205204 (2003).
[CrossRef]

U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
[CrossRef]

Gaj, J. A.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

Gallagher, B. L.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Gamouras, A.

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

Gan’shina, E. A.

G. S. Krinchik and E. A. Gan’shina, “Quadratic magnetooptical reflection effects in ferromagnets,” Sov. Phys. JETP 38, 983–989 (1974).

Gaylord, T. K.

Geprägs, S.

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Gippius, N. A.

A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Glownia, J. H.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Glunk, M.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

Goennenwein, S. T. B.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Golnik, A.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

Goryca, M.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

Grann, E. B.

Greffet, J. J.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009).
[CrossRef]

Gross, R.

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Gusev, V. E.

O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001).
[CrossRef]

Halilov, S. V.

S. V. Halilov and Y. A. Uspenskii, “Effects of degeneracy removal on optical and magneto-optical properties of 3d ferromagnetic metals,” J. Phys. Condens. Matter 4, 1299–1310 (1992).
[CrossRef]

Hall, K. C.

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

Hao, H.-Y.

H.-Y. Hao and H. J. Maris, “Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire,” Phys. Rev. B 63, 224301 (2001).
[CrossRef]

H.-Y. Hao and H. J. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B 64, 064302 (2001).
[CrossRef]

Hasegawa, T.

T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
[CrossRef]

Hashimoto, Y.

Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As,” Phys. Rev. Lett. 100, 067202 (2008).
[CrossRef]

Heber, J.

J. Heber, “Plasmonics: surfing the wave,” Nature 461, 720–722 (2009).
[CrossRef]

Hessel, A.

Horodyská, P.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Howard, W. M.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Hugonin, J. P.

Inoue, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999).
[CrossRef]

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Ivchenko, E. L.

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

E. L. Ivchenko, “Exchange interaction and scattering of light with reversal of the hole angular momentum at an acceptor in quantum-well structures,” Sov. Phys. Solid State 34, 254–260(1992).

Joannopoulos, J. D.

Johnson, M.

M. Johnson and M. Spin, Physics of Semiconductors, M. Dyakonov, ed. (Springer, 2008), Ch. 10.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jungwirth, T.

J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009).
[CrossRef]

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Kalish, A. N.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
[CrossRef]

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, “Optical properties of toroidal media,” Proc. SPIE 6728, 67283D (2007).
[CrossRef]

Karczewski, G.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

Kavokin, K. V.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

Kazimierczuk, T.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

Kiessling, T.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

Kim, K.-Y.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Kima, H. C.

S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
[CrossRef]

Kimel, A. V.

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

King, C. S.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Kirilyuk, A.

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Kneipp, K.

K. Kneipp, “Surface-enhanced Raman scattering,” Physics Today 60(11), 40–46 (2007).
[CrossRef]

Kobayashi, S.

Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As,” Phys. Rev. Lett. 100, 067202 (2008).
[CrossRef]

Kolodka, R.

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

Korenev, L. V.

B. P. Zakharchenya and L. V. Korenev, “Integrating magnetism into semiconductor electronics,” Phys. Uspekhi 48, 603–608 (2005).
[CrossRef]

Korenev, V. L.

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

Kossacki, P.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).

Krenn, H.

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

Krinchik, G. S.

G. S. Krinchik and E. A. Gan’shina, “Quadratic magnetooptical reflection effects in ferromagnets,” Sov. Phys. JETP 38, 983–989 (1974).

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible and infrared parts of spectrum,” Sov. Phys. JETP 26, 1080–1085 (1968).

Kucera, J.

J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009).
[CrossRef]

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Kusrayev, Yu. G.

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

Kutrowski, M.

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).

Lang, R.

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

Lazarev, M. V.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

Le Gall, C.

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

Lee, B.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Lee, S.

S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
[CrossRef]

Levy, A.

Li, L.

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A: Pure Appl. Opt. 5, 345–355 (2003).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).

Lim, W. L.

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

Limmer, W.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Liu, X.

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
[CrossRef]

M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
[CrossRef]

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

X. Liu, Y. Sasaki, and J. K. Furdyna, “Ferromagnetic resonance in Ga1−xMnxAs: effects of magnetic anisotropy,” Phys. Rev. B 67, 205204 (2003).
[CrossRef]

U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
[CrossRef]

Lobov, I. D.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).

Malý, P.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

March, S.

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

Mariette, H.

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

Maris, H. J.

H.-Y. Hao and H. J. Maris, “Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire,” Phys. Rev. B 63, 224301 (2001).
[CrossRef]

H.-Y. Hao and H. J. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B 64, 064302 (2001).
[CrossRef]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994).
[CrossRef]

Marquier, F.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009).
[CrossRef]

Matsuda, O.

O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001).
[CrossRef]

Matsukura, F.

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
[CrossRef]

Mayevskiy, V. M.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).

Mirlin, D. N.

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

Moharam, M. G.

Molenkamp, L. W.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Moore, G. P.

G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
[CrossRef]

Moreno, M.

G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
[CrossRef]

Mougin, A.

G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
[CrossRef]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Munekata, H.

Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As,” Phys. Rev. Lett. 100, 067202 (2008).
[CrossRef]

Najafov, H.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Nakatani, Y.

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

Nawrocki, M.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

Nemec, P.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Neviere, M.

Nishitani, Y.

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

Novák, V.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Ohno, H.

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
[CrossRef]

Olejník, K.

J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009).
[CrossRef]

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Oliner, A. A.

Opel, M.

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Ossau, W.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Overby, M.

M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
[CrossRef]

Pascher, H.

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

Perakis, I. E.

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

Perrin, B.

O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001).
[CrossRef]

Piner, E. L.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Ploog, K.

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

Podzorov, V.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Polman, A.

A. Polman, “Plasmonics applied,” Science 322, 868–869 (2008).
[CrossRef]

Pommet, D. A.

Popov, E.

Qi, J.

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

Rasing, Th.

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Reed, E. J.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Reinisch, R.

Robb, J. L.

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

Roberts, J. C.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Rokhinson, L. P.

M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
[CrossRef]

Rozkotová, E.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Ruf, T.

V. F. Sapega, T. Ruf, and M. Cardona, “Spin-flip Raman study of exchange interactions in bulk GaAs:Mn,” Phys. Stat. Sol. B 226, 339–356 (2001).
[CrossRef]

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

Rushforth, A. W.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Salasyuk, A. S.

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

Sapega, V. F.

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

V. F. Sapega, T. Ruf, and M. Cardona, “Spin-flip Raman study of exchange interactions in bulk GaAs:Mn,” Phys. Stat. Sol. B 226, 339–356 (2001).
[CrossRef]

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

Sarrazin, M.

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 38(3), 27–31(2007).
[CrossRef]

Sasaki, Y.

X. Liu, Y. Sasaki, and J. K. Furdyna, “Ferromagnetic resonance in Ga1−xMnxAs: effects of magnetic anisotropy,” Phys. Rev. B 67, 205204 (2003).
[CrossRef]

Sauer, R.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

Sawicki, M.

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

Scherbakov, A. V.

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

Schmidt, G.

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Schoch, W.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Schott, G. M.

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Schwaiger, S.

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

Shono, T.

T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
[CrossRef]

Spin, M.

M. Johnson and M. Spin, Physics of Semiconductors, M. Dyakonov, ed. (Springer, 2008), Ch. 10.

Sprinzl, D.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Steel, M. J.

Suh, W.

Tas, G.

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994).
[CrossRef]

Teperik, T. V.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009).
[CrossRef]

Tikhodeev, S. G.

A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Titova, L. V.

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

Tkachuk, M. N.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

Tolk, N. H.

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

Tosunyan, L. A.

V. M. Dubovik and L. A. Tosunyan, “Toroidal moments in the physics of electromagnetic and weak interactions,” Sov. J. Part. Nucl. 14, 504–519 (1983).

Trojánek, F.

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

Tsvetkov, A. A.

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Uspenskii, Y. A.

S. V. Halilov and Y. A. Uspenskii, “Effects of degeneracy removal on optical and magneto-optical properties of 3d ferromagnetic metals,” J. Phys. Condens. Matter 4, 1299–1310 (1992).
[CrossRef]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
[CrossRef]

Vigneron, J. P.

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 38(3), 27–31(2007).
[CrossRef]

Vlasko-Vlasov, V. K.

U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
[CrossRef]

Výborný, K.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Weiler, M.

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

Weiss, T.

A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
[CrossRef]

Welp, U.

U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Winter, A.

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

Wojnar, P.

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

Wojtowicz, T.

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
[CrossRef]

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
[CrossRef]

Wright, O. B.

O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001).
[CrossRef]

Wunderlich, J.

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Xu, Y.

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

Yang, H. C.

Zahn, J. P.

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

Zakharchenya, B. P.

B. P. Zakharchenya and L. V. Korenev, “Integrating magnetism into semiconductor electronics,” Phys. Uspekhi 48, 603–608 (2005).
[CrossRef]

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Zemen, J.

J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009).
[CrossRef]

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

Zhou, Q.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

Zhukov, E. A.

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

Zutic, I.

I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
[CrossRef]

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26, 1594–1598 (2009).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magnetooptical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, “Optical properties of toroidal media,” Proc. SPIE 6728, 67283D (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).

Appl. Opt.

Appl. Phys. Lett.

M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, “GaMnAs-based hybrid multiferroic memory device,” Appl. Phys. Lett. 92, 192501 (2008).
[CrossRef]

E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek, P. Malý, V. Novák, K. Olejník, M. Cukr, and T. Jungwirth, “Light-induced magnetization precession in GaMnAs,” Appl. Phys. Lett. 92, 122507 (2008).
[CrossRef]

G. V. Astakhov, A. V. Kimel, G. M. Schott, A. A. Tsvetkov, A. Kirilyuk, D. R. Yakovlev, G. Karczewski, W. Ossau, G. Schmidt, L. W. Molenkamp, and Th. Rasing, “Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation,” Appl. Phys. Lett. 86, 152506 (2005).
[CrossRef]

K. C. Hall, J. P. Zahn, A. Gamouras, S. March, J. L. Robb, X. Liu, and J. K. Furdyna, “Ultrafast optical control of coercivity in GaMnAs,” Appl. Phys. Lett. 93, 032504 (2008).
[CrossRef]

J. Qi, Y. Xu, N. H. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, “Coherent magnetization precession in GaMnAs induced by ultrafast optical excitation,” Appl. Phys. Lett. 91, 112506(2007).
[CrossRef]

T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga,Mn)As with a scanning Hall probe microscope,” Appl. Phys. Lett. 77, 1363–1365 (2000).
[CrossRef]

Europhys. News

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 38(3), 27–31(2007).
[CrossRef]

J. Appl. Phys.

G. P. Moore, J. Ferré, A. Mougin, M. Moreno, and L. Däweritz, “Magnetic anisotropy and switching process in diluted Ga1−xMnxAs magnetic semiconductor films,” J. Appl. Phys. 94, 4530–4534 (2003).
[CrossRef]

X. Liu, W. L. Lim, L. V. Titova, M. Dobrowolska, J. K. Furdyna, M. Kutrowski, and T. Wojtowicz, “Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films,” J. Appl. Phys. 98, 063904 (2005).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85, 5768–5771 (1999).
[CrossRef]

J. Exp. Theor. Phys.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010).
[CrossRef]

J. Lightwave Technol.

J. Magn. Magn. Mater.

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321, 826–828 (2009).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, and A. K. Zvezdin, “Magnetooptical properties of perforated metallic films,” J. Magn. Magn. Mater. 310, e843–e845 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A: Pure Appl. Opt. 5, 345–355 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

S. V. Halilov and Y. A. Uspenskii, “Effects of degeneracy removal on optical and magneto-optical properties of 3d ferromagnetic metals,” J. Phys. Condens. Matter 4, 1299–1310 (1992).
[CrossRef]

J. Phys. F: Met. Phys.

C. N. Afonso and F. Briones, “Even magneto-optical effects in ferromagnetic transition metals,” J. Phys. F: Met. Phys. 10, 1253–1260 (1980).
[CrossRef]

J. Phys.: Conf. Ser.

V. I. Belotelov, E. A. Bezus, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Inverse Faraday effect in plasmonic heterostructures,” J. Phys.: Conf. Ser. 200, 092003 (2010).
[CrossRef]

JETP Lett.

A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, “Surface plasmon polaritons in metallo-dielectric meander-type gratings,” JETP Lett. 90, 355–358 (2009).
[CrossRef]

Nat. Mater.

H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov, “Observation of long-range exciton diffusion in highly ordered organic semiconductors,” Nat. Mater. 9, 938–943 (2010).
[CrossRef]

T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nat. Mater. 9, 965–974 (2010).
[CrossRef]

Nat. Nanotech.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[CrossRef]

Nat. Phys.

M. R. Armstrong, E. J. Reed, K.-Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285–288 (2009).
[CrossRef]

Nature

D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, “Magnetization vector manipulation by electric fields,” Nature 455, 515–518 (2008).
[CrossRef]

J. Heber, “Plasmonics: surfing the wave,” Nature 461, 720–722 (2009).
[CrossRef]

Opt. Commun.

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Commun. 278, 104–109 (2007).
[CrossRef]

Opt. Lett.

Phys. Met. Metallogr.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58–65 (1983).

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
[CrossRef]

Phys. Rev. B

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79, 195414 (2009).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

H.-Y. Hao and H. J. Maris, “Experiments with acoustic solitons in crystalline solids,” Phys. Rev. B 64, 064302 (2001).
[CrossRef]

G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994).
[CrossRef]

O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202 (2001).
[CrossRef]

X. Liu, Y. Sasaki, and J. K. Furdyna, “Ferromagnetic resonance in Ga1−xMnxAs: effects of magnetic anisotropy,” Phys. Rev. B 67, 205204 (2003).
[CrossRef]

H.-Y. Hao and H. J. Maris, “Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire,” Phys. Rev. B 63, 224301 (2001).
[CrossRef]

R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, “Polar Kerr effect studies of Ga1−xMnxAs epitaxial films,” Phys. Rev. B 72, 024430 (2005).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, E. A. Zhukov, D. R. Yakovlev, and M. Bayer, “Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques,” Phys. Rev. B 80, 081203(R) (2009).
[CrossRef]

V. F. Sapega, T. Ruf, M. Cardona, K. Ploog, E. L. Ivchenko, and D. N. Mirlin, “Resonant Raman scattering due to bound-carrier spin flip in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 50, 2510–2519 (1994).
[CrossRef]

A. W. Rushforth, E. De Ranieri, J. Zemen, J. Wunderlich, K. W. Edmonds, C. S. King, E. Ahmad, R. P. Campion, C. T. Foxon, B. L. Gallagher, K. Výborný, J. Kučera, and T. Jungwirth, “Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,” Phys. Rev. B 78, 085314 (2008).
[CrossRef]

C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, “Ga1−xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation,” Phys. Rev. B 78, 045203 (2008).
[CrossRef]

J. Zemen, J. Kučera, K. Olejník, and T. Jungwirth, “Magnetocrystalline anisotropies in (Ga,Mn)As: systematic theoretical study and comparison with experiment,” Phys. Rev. B 80, 155203 (2009).
[CrossRef]

M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, “Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration,” Phys. Rev. B 79, 195206 (2009).
[CrossRef]

Phys. Rev. Lett.

U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, “Magnetic domain structure and magnetic anisotropy in Ga1−xMnxAs,” Phys. Rev. Lett. 90, 167206(2003).
[CrossRef]

I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, “Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields,” Phys. Rev. Lett. 106, 147402 (2011).
[CrossRef]

C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, “Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation,” Phys. Rev. Lett. 102, 127402(2009).
[CrossRef]

M. Goryca, T. Kazimierczuk, M. Nawrocki, A. Golnik, J. A. Gaj, P. Kossacki, P. Wojnar, and G. Karczewski, “Optical manipulation of a single Mn spin in a CdTe-based quantum dot,” Phys. Rev. Lett. 103, 087401 (2009).
[CrossRef]

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, “Suppression of electron spin relaxation in Mn-doped GaAs,” Phys. Rev. Lett. 101, 076602 (2008).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef]

Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced precession of magnetization in ferromagnetic (Ga,Mn)As,” Phys. Rev. Lett. 100, 067202 (2008).
[CrossRef]

A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses,” Phys. Rev. Lett. 105, 117204 (2010).
[CrossRef]

Phys. Stat. Sol. (RRL)

S. Maier, ed., “Special Issue: Plasmonics and Nanophotonics,” Phys. Stat. Sol. (RRL) 4 (2010).

Phys. Stat. Sol. B

V. F. Sapega, T. Ruf, and M. Cardona, “Spin-flip Raman study of exchange interactions in bulk GaAs:Mn,” Phys. Stat. Sol. B 226, 339–356 (2001).
[CrossRef]

Phys. Uspekhi

B. P. Zakharchenya and L. V. Korenev, “Integrating magnetism into semiconductor electronics,” Phys. Uspekhi 48, 603–608 (2005).
[CrossRef]

Physics Today

K. Kneipp, “Surface-enhanced Raman scattering,” Physics Today 60(11), 40–46 (2007).
[CrossRef]

Proc. SPIE

A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, “Optical properties of toroidal media,” Proc. SPIE 6728, 67283D (2007).
[CrossRef]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects at the Rayleigh-Wood and plasmon anomalies,” Proc. SPIE 6728, 67281M (2007).
[CrossRef]

Rev. Mod. Phys.

I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Science

A. Polman, “Plasmonics applied,” Science 322, 868–869 (2008).
[CrossRef]

Solid State Commun.

S. Chung, H. C. Kima, S. Lee, X. Liu, and J. K. Furdyna, “The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn)As,” Solid State Commun. 149, 1739–1742 (2009).
[CrossRef]

Sov. J. Part. Nucl.

V. M. Dubovik and L. A. Tosunyan, “Toroidal moments in the physics of electromagnetic and weak interactions,” Sov. J. Part. Nucl. 14, 504–519 (1983).

Sov. Phys. JETP

G. S. Krinchik and V. A. Artem’ev, “Magneto-optical properties of Ni, Co, and Fe in the ultraviolet visible and infrared parts of spectrum,” Sov. Phys. JETP 26, 1080–1085 (1968).

G. S. Krinchik and E. A. Gan’shina, “Quadratic magnetooptical reflection effects in ferromagnets,” Sov. Phys. JETP 38, 983–989 (1974).

Sov. Phys. Solid State

E. L. Ivchenko, “Exchange interaction and scattering of light with reversal of the hole angular momentum at an acceptor in quantum-well structures,” Sov. Phys. Solid State 34, 254–260(1992).

Other

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).

S. I. Bozhevolnyi, Plasmonics Nanoguides and Circuits (Pan Stanford, 2008).

M. Johnson and M. Spin, Physics of Semiconductors, M. Dyakonov, ed. (Springer, 2008), Ch. 10.

A. Abragam, The Principles of Nuclear Magnetism (Oxford, 1961), Chap. VIII.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

(a) SFRS spectra taken at B=2T in Faraday geometry, (b) magnetic field dependences of the Raman shifts for spin flips with a transfer of one (n=1) or two (n=2) angular momentum quanta [23].

Fig. 2.
Fig. 2.

(a) Intensity ratio of the intensities of the Stokes and anti-Stokes spin-flip Raman lines as a function of magnetic field. Shown are the data for different Raman orders (n=1 and n=2) and opposite helicity configuration of excitation and detection. (b) Polarization degree of the Mn ions for opposite circular polarizations of excitation [23].

Fig. 3.
Fig. 3.

(a) Intensity decay of the donor–acceptor PL line, (b) time evolution of the normalized electron polarization for different longitudinal magnetic fields. Solid curves are fits by Eq. (5) [23].

Fig. 4.
Fig. 4.

Magnetic field dependences of manganese polarization PM and electron spin relaxation time τs, evaluated from Pe(t) transients using Eq. (5). The pulse repetition period is ti=1.2μs, with a photon excitation energy of 1.56 eV [23].

Fig. 5.
Fig. 5.

(a) Circular polarization oscillations in an oblique magnetic field (α=70°, B=55mT) for excitation with σ+ and σ polarized photons. The sign of the circular polarization degree for σ excitation is reversed for clearness. The inset schematically shows the electron spin precession in the external and the exchange fields. (b) Magnetic field dependence of the electron polarization plateau Pepl and the effective exchange magnetic field BM [23].

Fig. 6.
Fig. 6.

(a) Scheme of the experiment. The dashed circle shows the precession of M around its equilibrium direction, which results in a modulation of Mz. (b) Magnetic field dependence of the KR angle (left vertical axis) and the corresponding value of Mz/M (right vertical axis), measured in the absence of strain pulses. (c) Scheme of pump-probe experiments with strain pulses. The laser data are as follows: wavelength 800 nm, pulse duration 200 fs, repetition rate 100 kHz; pump beam spot diameter is 300 μm, and the energy density per pulse is 2mJ/cm2; probe beam spot diameter is 150 μm, and the energy density per pulse is less than 10μJ/cm2. (d) Spatial shape of strain pulse εzz injected into the GaAs substrate. (e) Temporal evolution of relative layer thickness of the (Ga,Mn)As layer ε¯(t) [41].

Fig. 7.
Fig. 7.

Strain-pulse-induced temporal evolution Δφ(t) of the KR angle changes measured (a) at various magnetic fields and (b) at B=0.8kOe. The value t=0 corresponds to the time when the strain pulse enters the (Ga,Mn)As layer, and the vertical arrow in panel (a) indicates the time when the strain pulse leaves the (Ga,Mn)As layer. The thick solid curve in (b) is the calculated temporal evolution of ΔMz(t)/M obtained for dθ/dεzz=60rad, F=7GHz, and for a precession decay time of 400 ps [41].

Fig. 8.
Fig. 8.

Field dependences of (a) the precession frequency F and (b) the angle variation parameter dθ/dεzz. Symbols show the values obtained by fitting the experimental KR signals. Solid curves show the calculated dependences of F and dθ/dεzz obtained using the anisotropy parameters of the studied structure and assuming dH2/dεzz to be a field-independent parameter equal to 850 kOe [41].

Fig. 9.
Fig. 9.

Magnetoplasmonic crystals consisting of a metal grating on top of a planar ferromagnetic dielectric grown on a nonmagnetic substrate. The magnetization M in the ferromagnetic layer is parallel to the slits, and the incident light (red arrow) is p-polarized; k is the wave vector of the incident wave [57].

Fig. 10.
Fig. 10.

(a) Fano resonance shift induced by the gyration vector in the transversal geometry, (b) Fano resonances, and (c) magneto-optical effect δ for various Fano parameters q: q=0.3 (solid curve), 0.7 (dashed curve), and 3.0 (dash-dotted curve); γp/ωp=0.1 [54].

Fig. 11.
Fig. 11.

(a) Spectra of the reflection coefficient (solid curve) and its relative change δR (dashed curve), (b) spectra of the transmission coefficient (solid curve) and its relative change δT (dashed curve). The angle of light incidence is 20°. The plane of incidence is perpendicular to the slits, p-polarization. The arrows mark the wavelengths of the Rayleigh–Wood anomalies. The structure parameters are d=430nm, r=40nm, and h=100nm (see Fig. 9) [54].

Fig. 12.
Fig. 12.

Distribution of the square of the magnitude of the magnetic field component Hy (in relative units) at (a) λ=680nm and (b) λ=875nm. The metallic grating is marked by the dashed line. The structure parameters are the same as those in Fig. 11 [54].

Fig. 13.
Fig. 13.

(a) Dispersion diagram for SPPs at the gold–air interface (thick red line) and at the gold–iron garnet interface (thin blue lines), calculated in the free lattice approximation within the first Brillouin zone. The green lines indicate the dispersion curves for free space photons for θ=5°, 10°, and 15°. (b)–(d) False-color plots showing (b) experimentally measured transmission, (c) calculated TMOKE parameter δ, and (d) experimentally measured TMOKE parameter δ as a function of photon energy (vertical axis) and angle of incidence (horizontal axis). M is parallel to the slits, and the incident light is p-polarized (as in Fig. 9). The in-plane magnetic field strength is 2000 Oe. The features labeled (1)–(4) are related to SPPs or Fabry–Perot eigenmodes [57], as described in the text.

Fig. 14.
Fig. 14.

Experimentally measured transmission (thick black curves) and TMOKE (thin red curves) for three different incidence angles: (a) θ=0.8°, (b) θ=5°, (c) θ=15° [57].

Fig. 15.
Fig. 15.

The amplitudes of the two peaks (i) and (ii) in the TMOKE spectrum in Fig. 14(c) as a function of the magnetic field [57].

Fig. 16.
Fig. 16.

Top left: Schematic of the magnetoplasmonic crystal. Top right: Spectrum of the magneto-optical effect δ. Bottom: Spectra of the zero-order transmission T0 and T1 of the nonmagnetized (thinner line) and magnetized (thicker line) heterostructure, respectively. Metal layer thickness h is 362 nm, magnetic layer thickness hm is 1935 nm, period of the grating d is 552 nm, and slit width r is 55 nm. Illumination is p-polarized and normally incident [75].

Fig. 17.
Fig. 17.

Magneto-optical effect ΔT=|T1T0| versus hm and d at λ=1200nm. Solid curves represent conditions for the excitation of the eigenmode of “TE type” calculated by Eqs. (23) and (24). The other parameters of the structure are the same as for Fig. 16. Point A indicates parameters for the former structure [75].

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ηnσ=InσSInσASInσS+InσAS=3n2(I+1)PM(σ,B),
dPMdt=1TM[PMPTI+1S+1(PePeT)]1TL(PMPT).
PM=PT+TLTL+TMI+1S+1Pe.
dPedt=1τS[PePeTS+1I+1(PMPT)],
Pe(t)=I+1S+1PM+[PiI+1S+1PM]exp(tτS).
φ=arctan(Re[ir+rr++r]),
ε¯(t)=Δd(t)d=1d0dεzz(t,z)dz,
Δθε(t)=dθdεzzε¯(t)=dθdH2dH2dεzzε¯(t).
δ=(R(M)R(M))/R(0).
κ=k||(i)+mG,
ε^m=(ε20igy0ε2igxigyigxε2),
κ=κ0(1+αg),
(L^+V^)H=ω2/c2H,
(L^+V^)uκ=ω2/c2uκ.
ωn(κ,g)=ω0n(κ)+Ω(g).
SAin=Ascat.
det(S1)=0.
det(S)=pDpωω˜p+D0,
Am=det(Sm1)/det(S1).
Am=apmωω˜p+bpm.
Im|Am|2=(ωωz)2+γz2(ωωp)2+γp2|bpm|2,
ωz=ωp[1Re(qpm)],γz=γp[1ωpγpIm(qpm)],qpm=apmωpbpm.
|Am(g,ω)|2=|Am(0,ωΩ(g))|2
(ΔI)max(|Am|2)maxΩ(g)γp3|apm|2;(δ)max=3Ω(g)γp.
γ2hm=arctan(α1/α2)+arctan(α3/α2)+πq,
β=2πdq1+k||,

Metrics