Abstract

We study the time-resolved reflectivity spectrum of a switched planar GaAs-AlAs microcavity. Between 5 and 40 ps after the switching (pump) pulse, we observe a strong excess probe reflectivity and a change of the frequency of light trapped in the cavity up to 5 linewidths away from the cavity resonance. This frequency change does not adiabatically follow the fast-changing cavity resonance. The frequency change is attributed to an accumulated phase change due to the time-dependent refractive index. An analytical model predicts dynamics in qualitative agreement with the experiments, and points to crucial parameters that control future applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer, 2003).
  2. G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934).
    [CrossRef]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
    [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  5. P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002).
  6. E. J. Reed, M. Soljaĉić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
    [CrossRef]
  7. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef]
  8. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R) (2006).
    [CrossRef]
  9. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recatia, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
    [CrossRef]
  10. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics 1, 293–296 (2007).
    [CrossRef]
  11. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, “Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity,” Opt. Express 15, 11472–11480 (2007).
    [CrossRef]
  12. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009).
    [CrossRef]
  13. P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
    [CrossRef]
  14. P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.
  15. A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.
  16. T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
    [CrossRef]
  17. T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
    [CrossRef]
  18. P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 26, 610–619 (2009).
    [CrossRef]
  19. The measured spectrum J(ω) is the Fourier Transform of the time-dependent probe electric field E(t) that exits fromthe cavity J(ω)=πr2(ϵ0c)−1|∫−∞∞dtE(t)e−iωt|2with c the speed of light and r the radius of the beam and neglecting amplification and conversion factors. Since the detection system’s integration time of 150 ns is much longer than a probe-sample interaction time, the boundaries of the integral are taken to ±∞. Due to averaging of probe pulses over alternating pumped and unpumped events, the correct transient reflectivity is 2× greater than raw data as in Figs. 2 and 3; Fig. 4 has been corrected.
  20. W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
    [CrossRef]
  21. D. J. Bohm, Quantum Theory (Dover, 1989).
  22. P. W. Atkins and R. C. Gurd, “Numerical integration of the 2-level time-dependent Schrödinger equation,” Chem. Phys. Lett 16, 265–269 (1972).
    [CrossRef]
  23. T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
    [CrossRef]
  24. G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
    [CrossRef]
  25. G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
    [CrossRef]

2011 (1)

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

2009 (4)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef]

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[CrossRef]

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 26, 610–619 (2009).
[CrossRef]

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

2007 (3)

P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics 1, 293–296 (2007).
[CrossRef]

M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, “Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity,” Opt. Express 15, 11472–11480 (2007).
[CrossRef]

2006 (2)

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R) (2006).
[CrossRef]

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recatia, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[CrossRef]

2005 (1)

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

2004 (1)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef]

2003 (1)

E. J. Reed, M. Soljaĉić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef]

2002 (1)

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002).

1999 (1)

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

1997 (1)

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[CrossRef]

1972 (1)

P. W. Atkins and R. C. Gurd, “Numerical integration of the 2-level time-dependent Schrödinger equation,” Chem. Phys. Lett 16, 265–269 (1972).
[CrossRef]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

1934 (1)

G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934).
[CrossRef]

Akimov, A. V.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Atkins, P. W.

P. W. Atkins and R. C. Gurd, “Numerical integration of the 2-level time-dependent Schrödinger equation,” Chem. Phys. Lett 16, 265–269 (1972).
[CrossRef]

Baba, T.

S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer, 2003).

Banjai, L.

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

Bayer, M.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Bazin, M.

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

Berstermann, T.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Bloch, J.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Bohm, D. J.

D. J. Bohm, Quantum Theory (Dover, 1989).

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Breit, G.

G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934).
[CrossRef]

Carusotto, I.

Claudon, J.

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.

Ctistis, G.

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

Dekorsy, T.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[CrossRef]

Euser, T. G.

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[CrossRef]

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 26, 610–619 (2009).
[CrossRef]

P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[CrossRef]

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Gaburro, Z.

Gérard, J.-M.

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[CrossRef]

A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.

P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.

Ghulinyan, M.

Gippius, N. A.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Glavin, B. A.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Gurd, R. C.

P. W. Atkins and R. C. Gurd, “Numerical integration of the 2-level time-dependent Schrödinger equation,” Chem. Phys. Lett 16, 265–269 (1972).
[CrossRef]

Harding, P. J.

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 26, 610–619 (2009).
[CrossRef]

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[CrossRef]

P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[CrossRef]

P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.

Hartsuiker, A.

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.

P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.

Haug, H.

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

Heinrich, M. F.

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

Hey, R.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Hügel, W. A.

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

Joannopoulos, J. D.

E. J. Reed, M. Soljaĉić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef]

Johnson, P. M.

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002).

Koenderink, A. F.

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002).

Kuramochi, E.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef]

Kurz, H.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[CrossRef]

Lipson, M.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics 1, 293–296 (2007).
[CrossRef]

McCutcheon, M. W.

Mitsugi, S.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R) (2006).
[CrossRef]

Mosk, A. P.

A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.

P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.

Noda, S.

S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer, 2003).

Notomi, M.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef]

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R) (2006).
[CrossRef]

Nowicki-Bringuier, Y. R.

P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[CrossRef]

P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.

Pattantyus-Abraham, A. G.

Pavesi, L.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Ploog, K.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[CrossRef]

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics 1, 293–296 (2007).
[CrossRef]

Recatia, A.

Reed, E. J.

E. J. Reed, M. Soljaĉić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef]

Riboli, F.

Rieger, G. W.

Sagnes, I.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Scherbakov, A. V.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Segschneider, G.

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[CrossRef]

Soljacic, M.

E. J. Reed, M. Soljaĉić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef]

Taniyama, H.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef]

Vos, W. L.

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 26, 610–619 (2009).
[CrossRef]

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[CrossRef]

P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[CrossRef]

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002).

P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.

A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.

Vu, Q. T.

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

Wegener, M.

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

Wheeler, J. A.

G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934).
[CrossRef]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics 1, 293–296 (2007).
[CrossRef]

Yakovlev, D. R.

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef]

Young, J. F.

Yuce, E.

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007).
[CrossRef]

G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gérard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011).
[CrossRef]

G. Segschneider, T. Dekorsy, H. Kurz, R. Hey, and K. Ploog, “Energy resolved ultrafast relaxation dynamics close to the band edge of low-temperature grown GaAs,” Appl. Phys. Lett. 71, 2779–2781 (1997).
[CrossRef]

Chem. Phys. Lett (1)

P. W. Atkins and R. C. Gurd, “Numerical integration of the 2-level time-dependent Schrödinger equation,” Chem. Phys. Lett 16, 265–269 (1972).
[CrossRef]

J. Appl. Phys. (1)

T. G. Euser and W. L. Vos, “Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors,” J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature Photonics (1)

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics 1, 293–296 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934).
[CrossRef]

Phys. Rev. A (1)

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R) (2006).
[CrossRef]

Phys. Rev. B (2)

P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102(R) (2002).

T. Berstermann, A. V. Scherbakov, A. V. Akimov, D. R. Yakovlev, N. A. Gippius, B. A. Glavin, I. Sagnes, J. Bloch, and M. Bayer, “Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity,” Phys. Rev. B 80, 075301 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

E. J. Reed, M. Soljaĉić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961).
[CrossRef]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped Light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef]

W. A. Hügel, M. F. Heinrich, M. Wegener, Q. T. Vu, L. Banjai, and H. Haug, “Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics,” Phys. Rev. Lett. 83, 3313–3316 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

T. G. Euser, P. J. Harding, and W. L. Vos, “Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors,” Rev. Sci. Instrum. 80, 073104 (2009).
[CrossRef]

Other (6)

P. J. Harding, A. P. Mosk, A. Hartsuiker, Y. R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arxiv.org/0901.3855.

A. Hartsuiker, A. P. Mosk, J. Claudon, J.-M. Gérard, and W. L. Vos, “Measuring the true quality factor of an ultrafast photonic microcavity: homogeneous versus inhomogeneous broadening,” arxiv.org/0906.1961.

D. J. Bohm, Quantum Theory (Dover, 1989).

The measured spectrum J(ω) is the Fourier Transform of the time-dependent probe electric field E(t) that exits fromthe cavity J(ω)=πr2(ϵ0c)−1|∫−∞∞dtE(t)e−iωt|2with c the speed of light and r the radius of the beam and neglecting amplification and conversion factors. Since the detection system’s integration time of 150 ns is much longer than a probe-sample interaction time, the boundaries of the integral are taken to ±∞. Due to averaging of probe pulses over alternating pumped and unpumped events, the correct transient reflectivity is 2× greater than raw data as in Figs. 2 and 3; Fig. 4 has been corrected.

S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer, 2003).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Broadband reflectivity spectrum measured with a white-light source. The reflectivity is calibrated by normalizing to the spectrum of a gold mirror. The trough at 1.278 eV is the cavity resonance, and the broad intense peak between 1.192 and 1.376 eV is the photonic stop band of the Bragg mirrors. (b) High-resolution reflectance spectrum measured with the probe laser showing the cavity resonance at 1.278 eV. The width of the cavity resonance is slightly broadened due to wavevector spreading and interface roughness caused by imperfect growth (1.03 meV) compared to the homogeneous linewidth (0.85 meV).

Fig. 2.
Fig. 2.

Transient probe reflectivity versus pump-probe delay and frequency. The spectra are averaged over both switched and unswitched events [19]. The switched cavity resonance is shown by white squares. The solid white curve is a model of the switched cavity resonance using Drude free-carrier dispersion [14]. The dashed white line is the unswitched cavity resonance. The faint modulation with delay (at 30, 60, 90 ps) is an artifact due to environmental changes during the scan. Inset: scheme of the setup with pump pulses entering obliquely and probe pulses reflected at normal incidence with delay Δτ.

Fig. 3.
Fig. 3.

(a) Transient probe reflectivity spectra measured at pump-probe delays Δτ=8, 18, 38 ps (cross-sections from Fig. 2). Arrows indicate the frequency change of light from the cavity resonance to the excess transient reflectivity peaks (filled red). (b) Calculated transient reflectivity spectra at the same delays also reveal excess transient reflectivity peaks.

Fig. 4.
Fig. 4.

Excess transient reflectivity versus pump-probe time delay Δτ. Squares are our experimental results [19], and the circles denote results from our analytical model.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ(z)=E/(c)0zdz(n(z)n(0)),
E(t)=0dzR(z)dωE0(ω)ei(ωnz/cωt)+iΦ(z).

Metrics