Abstract

Leakage radiation spectroscopy has been applied to study surface plasmon polariton (SPP) generation by light scattered off aligned organic nanofibers deposited on a thin silver film. The efficiency of SPP generation was studied by angularly resolved leakage radiation spectroscopy as a function of excitation wavelength in the range 550–800 nm for both normal and oblique angles of incidence. For comparison, the differential transmission scattering cross section was calculated using Green’s function integral equations. Both theory and experiments show highly directional and much more efficient SPP excitation at an oblique angle of light incidence.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today61, 44–50 (2008).
    [CrossRef]
  2. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
    [CrossRef]
  3. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [CrossRef]
  4. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
    [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef]
  6. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  7. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  8. I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155–15161 (2011).
    [CrossRef]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).
  10. M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
    [CrossRef]
  11. L. Kankate, F. Balzer, H. Niehus, and H.-G. Rubahn, “From clusters to fibers: parameters for discontinuous p-6P thin film growth,” J. Chem. Phys. 128, 084709 (2008).
    [CrossRef]
  12. K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
    [CrossRef]
  13. D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
    [CrossRef]
  14. J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).
  15. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
    [CrossRef]
  16. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009).
    [CrossRef]
  17. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
    [CrossRef]
  18. D. G. Zhang, X.-C. Yuan, and J. Teng, “Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings,” Appl. Phys. Lett. 97, 231117 (2010).
    [CrossRef]
  19. M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, A. A. Green, M. C. Hersam, and A. Hartschuh, “Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna,” Opt. Express 18, 16443–16451 (2010).
    [CrossRef]
  20. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern averaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
    [CrossRef]
  21. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
    [CrossRef]
  22. I. Gryczynski, J. Malicka, Z. Gryzzynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
    [CrossRef]
  23. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
    [CrossRef]
  24. M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, “Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE),” Chem. Phys. Lett. 452, 162–167 (2008).
    [CrossRef]
  25. D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes,” Sens. Actuators B 127, 432–440 (2007).
    [CrossRef]
  26. T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).
  27. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
    [CrossRef]
  28. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).
  29. J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
    [CrossRef]
  30. A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
    [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  32. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
    [CrossRef]
  33. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
    [CrossRef]
  34. L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers” Small 7, 2460–2463 (2011).

2011

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155–15161 (2011).
[CrossRef]

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers” Small 7, 2460–2463 (2011).

2010

D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

D. G. Zhang, X.-C. Yuan, and J. Teng, “Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings,” Appl. Phys. Lett. 97, 231117 (2010).
[CrossRef]

M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, A. A. Green, M. C. Hersam, and A. Hartschuh, “Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna,” Opt. Express 18, 16443–16451 (2010).
[CrossRef]

2009

C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009).
[CrossRef]

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

2008

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, “Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE),” Chem. Phys. Lett. 452, 162–167 (2008).
[CrossRef]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

L. Kankate, F. Balzer, H. Niehus, and H.-G. Rubahn, “From clusters to fibers: parameters for discontinuous p-6P thin film growth,” J. Chem. Phys. 128, 084709 (2008).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

2007

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes,” Sens. Actuators B 127, 432–440 (2007).
[CrossRef]

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).

2006

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

2004

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern averaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryzzynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[CrossRef]

2002

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

1997

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

1996

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

Al-Shamery, K.

M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
[CrossRef]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Balzer, F.

L. Kankate, F. Balzer, H. Niehus, and H.-G. Rubahn, “From clusters to fibers: parameters for discontinuous p-6P thin film growth,” J. Chem. Phys. 128, 084709 (2008).
[CrossRef]

M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
[CrossRef]

Barnes, W. L.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef]

Böhmler, M.

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

Bouhelier, A.

D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Bozhevolnyi, S. I.

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155–15161 (2011).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today61, 44–50 (2008).
[CrossRef]

Brandstätter, C.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

Cheng, W.

Chichkov, B. N.

Chowdhury, M. H.

M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, “Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE),” Chem. Phys. Lett. 452, 162–167 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Colas Des Francs, G.

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Dereux, A.

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Ebbesen, T. W.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today61, 44–50 (2008).
[CrossRef]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

Enderlein, J.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Evlyukhin, A. B.

Felidj, N.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Fiutowski, J.

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Geddes, C. D.

M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, “Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE),” Chem. Phys. Lett. 452, 162–167 (2008).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today61, 44–50 (2008).
[CrossRef]

Georgi, C.

González, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Grandidier, J.

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Green, A. A.

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryzzynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[CrossRef]

Gryzzynski, Z.

I. Gryczynski, J. Malicka, Z. Gryzzynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[CrossRef]

Hartmann, N.

Hartschuh, A.

Hecht, B.

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

Hennrich, F.

Hersam, M. C.

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jung, J.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Kankate, L.

L. Kankate, F. Balzer, H. Niehus, and H.-G. Rubahn, “From clusters to fibers: parameters for discontinuous p-6P thin film growth,” J. Chem. Phys. 128, 084709 (2008).
[CrossRef]

Kjelstrup-Hansen, J.

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers” Small 7, 2460–2463 (2011).

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

Kostov, Y.

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes,” Sens. Actuators B 127, 432–440 (2007).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Lakowicz, J. R.

M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, “Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE),” Chem. Phys. Lett. 452, 162–167 (2008).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryzzynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Lamprecht, B.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Larsen, A. N.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Leising, G.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Lieb, M. A.

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Lützen, A.

M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
[CrossRef]

MacCraith, B. D.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryzzynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[CrossRef]

Markey, L.

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Massenot, S.

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

McDonagh, C.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Meghdadi, F.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

Niehus, H.

L. Kankate, F. Balzer, H. Niehus, and H.-G. Rubahn, “From clusters to fibers: parameters for discontinuous p-6P thin film growth,” J. Chem. Phys. 128, 084709 (2008).
[CrossRef]

Nielsen, B. B.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Niko, A.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Novotny, L.

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern averaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

Pedersen, K.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Pedersen, T. G.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Pohl, D. W.

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef]

Quidant, R.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Radko, I. P.

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155–15161 (2011).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

Rafaelsen, J.

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Rao, G.

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes,” Sens. Actuators B 127, 432–440 (2007).
[CrossRef]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

Ray, K.

M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, “Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE),” Chem. Phys. Lett. 452, 162–167 (2008).
[CrossRef]

Reinhardt, C.

Renger, J.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

Rubahn, H.-G.

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155–15161 (2011).
[CrossRef]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers” Small 7, 2460–2463 (2011).

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

L. Kankate, F. Balzer, H. Niehus, and H.-G. Rubahn, “From clusters to fibers: parameters for discontinuous p-6P thin film growth,” J. Chem. Phys. 128, 084709 (2008).
[CrossRef]

M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
[CrossRef]

Ruckstuhl, T.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Salerno, M.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Schider, G.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

Schiek, M.

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
[CrossRef]

Seidel, A.

Smith, D. S.

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes,” Sens. Actuators B 127, 432–440 (2007).
[CrossRef]

Søndergaard, T.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Tasch, S.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

Tavares, L.

I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155–15161 (2011).
[CrossRef]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers” Small 7, 2460–2463 (2011).

Teng, J.

D. G. Zhang, X.-C. Yuan, and J. Teng, “Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings,” Appl. Phys. Lett. 97, 231117 (2010).
[CrossRef]

Trnavsky, M.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Weeber, J.-C.

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

Winter, G.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

Yuan, X.

Yuan, X.-C.

D. G. Zhang, X.-C. Yuan, and J. Teng, “Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings,” Appl. Phys. Lett. 97, 231117 (2010).
[CrossRef]

Zavislan, J. M.

Zhang, D.

Zhang, D. G.

D. G. Zhang, X.-C. Yuan, and J. Teng, “Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings,” Appl. Phys. Lett. 97, 231117 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. B

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B 96, 821–826 (2009).
[CrossRef]

Appl. Phys. Lett.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

D. G. Zhang, X.-C. Yuan, and J. Teng, “Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings,” Appl. Phys. Lett. 97, 231117 (2010).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett. 80, 404–406 (2002).
[CrossRef]

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef]

Chem. Phys. Lett.

M. H. Chowdhury, K. Ray, C. D. Geddes, and J. R. Lakowicz, “Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE),” Chem. Phys. Lett. 452, 162–167 (2008).
[CrossRef]

Cryst. Growth Des.

M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, and H.-G. Rubahn, “Organic nanofibers from chloride-functionalized p-quaterphenylenes,” Cryst. Growth Des. 7, 229–233 (2007).
[CrossRef]

J. Appl. Phys.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys. 82, 4177–4182 (1997).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

J. Biomed. Opt.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evalutation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
[CrossRef]

J. Chem. Phys.

L. Kankate, F. Balzer, H. Niehus, and H.-G. Rubahn, “From clusters to fibers: parameters for discontinuous p-6P thin film growth,” J. Chem. Phys. 128, 084709 (2008).
[CrossRef]

J. Microsc.

J. Grandidier, G. Colas Des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microsc. 239, 167–172 (2010).

J. Opt. Soc. Am. B

J. Phys. Chem. B

I. Gryczynski, J. Malicka, Z. Gryzzynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[CrossRef]

Mater. Sci. Eng. B

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

Nano Letters

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Letters 7, 2784–2788 (2007).
[CrossRef]

Nat. Phys.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Opt. Express

Phys. Rev. B

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115(2008).
[CrossRef]

Phys. Rev. Lett.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).
[CrossRef]

Phys. Status Solidi B

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).

Sens. Actuators B

D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes,” Sens. Actuators B 127, 432–440 (2007).
[CrossRef]

Small

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers” Small 7, 2460–2463 (2011).

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2007).

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today61, 44–50 (2008).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Illustration of (a) excitation of SPP wave via phase matching (b) leakage of energy (i.e., light) out of SPP waves through the metal film and into the glass substrate.

Fig. 2.
Fig. 2.

Schematic of a p-6P fiber with orientation along the y-axis placed on the air side of a layered air-silver-glass geometry. The angle of light incidence for the excitation beam is given by θin (and ϕin). The direction of observation for the far-field in the glass substrate is given by θ (and ϕ). The dielectric constants of air, silver, and glass are denoted ε0, ε1, and ε2, respectively. For the numerical scattering calculation r refers to a source position and r is the observation point.

Fig. 3.
Fig. 3.

Transmission scattering versus wavelength and output angle for normally incident light on a p-6P fiber with thickness 60 nm, width 400 nm, and length 5000 nm, being placed on the air-side of a geometry with air/40 nm-silver/glass. The dashed line in (a) is an estimate for the transmission peak location based on the infinite-silver-film-thickness SPP dispersion relation. The results are symmetrical around θ=0°.

Fig. 4.
Fig. 4.

Transmission scattering versus wavelength and output angle for light incident at 45° on a p-6P fiber with thickness 60 nm, width 400 nm, and length 5000 nm, being placed on the air-side of a layered geometry with air/40 nm-silver/glass.

Fig. 5.
Fig. 5.

Angular FWHM of peaks in the angular transmission spectra versus wavelength for a range of silver film thicknesses d.

Fig. 6.
Fig. 6.

Angular transmission scattering spectra for light incident at 45 degrees on a nanofiber with thickness t, width w, and length 5000 nm, placed on the air-side of a layered geometry with air/40 nm-silver/glass. The transmission spectrum is normalized such that the angular transmission peak value for positive θ is unity. Two wavelengths λ=580nm and λ=780nm are considered.

Fig. 7.
Fig. 7.

Schematic of (a) the sample mounted on the cylindrical lens and (b) the rotating detector setup. The organic nanofibers are aligned to be parallel to the axis of the cylindrical lens. The iris before the sample limits the area of the sample that is exposed to the laser beam, and the beam block (black rectangle) after the sample is introduced to protect the detector from being damaged by the directly transmitted beam. In front of the detector, which is a photomultiplier tube, is an iris that limits the solid angle from which light is detected. (c) Fluorescence image of the organic p-6P nanofibers deposited on top of the silver coated glass substrate.

Fig. 8.
Fig. 8.

Color map of the normalized leakage signal as a function of angle and excitation wavelength. The dark area around zero degrees is due to the beam block protecting the detector from being hit directly by the transmitted laser beam. The cut-off below 75 and above 75 degrees is due to the sample holder blocking the light path to the detector at these angles.

Fig. 9.
Fig. 9.

(a) Left half of symmetric normalized angular spectra recorded at five selected wavelengths. The drop in signal around zero degrees is due to the beam block protecting the detector from the excitation beam. (b) Corresponding right half normalized to unity peak value.

Fig. 10.
Fig. 10.

Color map of the leakage signal as a function of angle and excitation wavelength when exciting at 45 degrees incidence. The data have been normalized to the same scale as that used for the data collected at normal incidence excitation.

Fig. 11.
Fig. 11.

Angular spectra for five selected wavelengths measured with excitation at 45 degrees incidence. The narrow peak centered at 27 degrees is due to an internal reflection in the prism, and the drop in signal in the angular range 20–35 degrees is due to a beam block protecting the detector from direct exposure to the excitation beam.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E(r)=E0(r)+G(r,r)k02(ε(r)εref(r))·E(r)d3r,
GFF(r,r)=eik2r4πrei(κz0zκz2d)eik2sinθ(cosϕx+sinϕy)[ϕ^ϕ^t02(s)κz2κz0+(z^sinθ+ρ^cosθ)t02(p)(κz2κz0z^sinθ+ρ^cosθ)].
t02(s,p)=t01(s,p)t12(s,p)eiκz1h1+r01(s,p)r12(s,p)ei2κz1h,
tij(p)=2εjκziεjκzi+εiκzj,rij(p)=εjκziεiκzjεjκzi+εiκzj,
tij(s)=2κziκzi+κzj,rij(s)=κziκzjκzi+κzj,
dσdΩ=Re(EscFF×HscFF*)r2Re(Ei×Hi*)=|EscFF|2n2r2|Ei|2n0,
θpeak=sin1(Re(nspp)nsubstrate),
nspp=nAg21+nAg2,
dσdΩ1(θθpeak)2+Im(nspp)2/(nsubstrate2Re(nspp)2),
ΔθFWHM=2Im(nspp)nsubstrate2Re(nspp)2.
xe±ik2sinθxE(x)dx
t02(p)(θ)(κz2κz0z^sinθ+x^cosθ)·μ,

Metrics