Abstract

We have measured the Raman gain coefficient spectrum and third-order susceptibility χ(3) of a fluoride ZBLAN glass and the Raman response function and Raman fraction of ZBLAN fiber are obtained from the Raman gain coefficient spectrum. We evaluate the performance of soliton self-frequency shift in ZBLAN fiber based on Raman gain coefficient spectrum and generalized nonlinear Schrödinger equation. It is numerically demonstrated that using ZBLAN fiber allows a significant enhancement of the soliton self-frequency shift as compared to silica fiber with comparable dispersion.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
    [CrossRef]
  2. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [CrossRef]
  3. M. G. Banaee and J. F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber,” J. Opt. Soc. Am. B 23, 1484–1489 (2006).
    [CrossRef]
  4. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
    [CrossRef]
  5. B. Barviau, O. Vanvincq, A. Mussor, Y. Quiquempois, G. Melin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinnum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B 28, 1152–1160 (2011).
    [CrossRef]
  6. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651–13656(2008).
  7. R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
    [CrossRef]
  8. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [CrossRef]
  9. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
    [CrossRef]
  10. Z. G. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
    [CrossRef]
  11. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
  12. G. P. Agrawal, Nolinear Fiber Optics, 4th. ed. (Academic, 2007).
  13. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
    [CrossRef]
  14. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892(2002).
    [CrossRef]
  15. T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
    [CrossRef]
  16. C. Petersen, S. Dupont, C. Agger, J. Thogersen, O. Bang, and S. R. Keiging, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011).
    [CrossRef]
  17. M. N. Islam (ed.), Raman Amplifiers for Telecommunications 1 Physical Principles (Springer, 2003).
  18. G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
  19. R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).
  20. A. Icsevgi and W. E. Lamb, “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).
    [CrossRef]
  21. R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
    [CrossRef]
  22. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  23. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
    [CrossRef]
  24. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989).
    [CrossRef]

2011 (2)

2010 (1)

2009 (2)

Z. G. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

2008 (2)

2007 (3)

R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
[CrossRef]

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).

R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

2006 (3)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

M. G. Banaee and J. F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber,” J. Opt. Soc. Am. B 23, 1484–1489 (2006).
[CrossRef]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086–3088 (2006).
[CrossRef]

2002 (2)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892(2002).
[CrossRef]

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

2001 (1)

1993 (2)

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

1989 (1)

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989).
[CrossRef]

1981 (1)

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).

1969 (1)

A. Icsevgi and W. E. Lamb, “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).
[CrossRef]

Aggarwal, I. D.

Agger, C.

Agrawal, G. P.

Almeida, R. M.

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).

Arai, Y.

R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
[CrossRef]

Banaee, M. G.

Bang, O.

Barviau, B.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Camerlingo, A.

Cantrell, C. D.

Chandalia, J. K.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

Chen, Z. G.

Cormack, I. G.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Dasgupta, S.

Dupont, S.

Efimov, A.

Eggleton, B. J.

Feng, X.

Flanagan, J. C.

Frampton, K. E.

Gorbach, A. V.

Gordon, J. P.

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989).
[CrossRef]

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Haus, H. A.

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989).
[CrossRef]

Hollenbeck, D.

Horak, P.

Hu, J.

Icsevgi, A.

A. Icsevgi and W. E. Lamb, “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).
[CrossRef]

Iwashita, H.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Jose, R.

R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
[CrossRef]

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).

Kanbara, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Keiging, S. R.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

Knight, J. C.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Knox, W. H.

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Kosinski, S. G.

Kubodera, K.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Kudlinski, A.

Lamb, W. E.

A. Icsevgi and W. E. Lamb, “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).
[CrossRef]

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

Lin, Q.

Liu, X.

Loh, W. H.

Mackenzie, J. D.

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).

Melin, G.

Menyuk, C. R.

Mizunami, T.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Mussor, A.

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).

R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
[CrossRef]

R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

Petersen, C.

Petropoulos, P.

Price, J. H. V.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

Qin, G. S.

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).

R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

Quiquempois, Y.

Reid, D. T.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Richardson, D. J.

Russell, P. St. J.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Rutt, H. N.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Sanghera, J. S.

Shaw, L. B.

Skryabin, D. V.

Stolen, R. H.

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989).
[CrossRef]

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

Takagi, K.

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Taylor, A. J.

Thogersen, J.

Tomlinson, W. J.

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989).
[CrossRef]

Vanvincq, O.

Wadsworth, W. J.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

White, N. M.

Windeler, R. S.

Xu, C.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

Young, J. F.

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).

IEEE Photon. Technol. Lett. (1)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

J. Appl. Phys. (2)

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

J. Chem. Phys. (1)

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74, 5954–5961 (1981).

J. Mod. Opt. (1)

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Opt. Soc. Am. B. (1)

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B. 6, 1159–1166 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Jose, G. S. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

Opt. Commun. (1)

T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Opt. Commun. 97, 74–78 (1993).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (1)

A. Icsevgi and W. E. Lamb, “Propagation of light pulses in a laser amplifier,” Phys. Rev. 185, 517–545 (1969).
[CrossRef]

Other (3)

M. N. Islam (ed.), Raman Amplifiers for Telecommunications 1 Physical Principles (Springer, 2003).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

G. P. Agrawal, Nolinear Fiber Optics, 4th. ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Raman gain coefficient spectra of ZBLAN and silica fibers.

Fig. 2.
Fig. 2.

(a) Decomposed Raman gain coefficient spectrum using single Lorentzian and (b) related Raman response function of ZBLAN fiber.

Fig. 3.
Fig. 3.

(a) Decomposed Raman gain coefficient spectrum using intermediate-broadening model and (b) related Raman response function of ZBLAN fiber.

Fig. 4.
Fig. 4.

Reproduced the Raman gain spectrum using intermediate-broadening (dashed line), Gaussians model (dotted line).

Fig. 5.
Fig. 5.

(a) Maker fringe patterns of ZBLAN and silica glasses and (b) spectrum of χ(3) for ZBLAN glass.

Fig. 6.
Fig. 6.

Simulated soliton spectral dynamics as a function of fiber length for a fixed pump power in (a) ZBLAN and (b) silica fibers.

Fig. 7.
Fig. 7.

Simulated (a) temporal and (b) spectral evolution of ultrashort laser pulses in ZBLAN and silica fibers.

Tables (1)

Tables Icon

Table 1. Values of the Parameters Used in the Intermediate-Broadening Model

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

hR(t)=i=18Aiexp(γit)exp(Γi2t2/4)sin(ωv,it),
gR(ω)i=18Ai0{cos[(ωv,iω)t]cos[(ωv,i+ω)t]}exp(γit)exp(Γi2t2/4)dt.
gR(ω)=2ω0cn2fRIm[h˜R(ω)],

Metrics