Abstract

We report a broadband polarization-independent wavelength conversion by reducing the dispersion discrepancy between the fundamental transverse electric (TE) and transverse magnetic (TM) modes in a silicon nanowire waveguide, through optimizing of the waveguide geometry. The size of the waveguide is optimized to 780nm×795nm (height×width) to ensure that the TE and TM zero-dispersion wavelengths locate at 1550nm, and the group velocity dispersion difference between the TE and TM modes is less than 33ps/(nm·km) in the wavelength range of 1300–1800 nm. Based on an angled-polarization pumped four-wave mixing scheme, a 1 dB polarization-independent bandwidth of 400 nm is achieved in a 0.8 cm-long optimized waveguide when the pump is set at 1553 nm. The tolerance to the pump angle detuning is also strengthened in the optimized waveguide.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
    [CrossRef]
  2. R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
  3. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
  4. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
  5. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).
  6. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003).
    [CrossRef]
  7. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005).
    [CrossRef]
  8. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
    [CrossRef]
  9. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  11. X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
    [CrossRef]
  12. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
    [CrossRef]
  13. X. Liu, W. M. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33, 2889–2891 (2008).
    [CrossRef]
  14. S. Gao, Z. Li, E.-K. Tien, S. He, and O. Boyraz, “Performance evaluation of nondegenerate wavelength conversion in a silicon nanowire waveguide,” J. Lightwave Technol. 28, 3079–3085 (2010).
  15. S. Gao, E.-K. Tien, Y. Huang, and S. He, “Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide,” Opt. Express 18, 27885–27890 (2010).
  16. Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
    [CrossRef]
  17. Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011).
    [CrossRef]
  18. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010).
    [CrossRef]
  19. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 250–256 (2010).
    [CrossRef]

2011 (2)

Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011).
[CrossRef]

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
[CrossRef]

2010 (5)

2009 (1)

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

2008 (1)

2007 (4)

R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

2006 (1)

2005 (2)

2003 (1)

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

Agrawal, G. P.

B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010).
[CrossRef]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Boyd, R. W.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

Boyraz, O.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).

Chen, X.

Claps, R.

Dadap, J. I.

Daniel, B. A.

Deckker, R.

R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).

Dimitropoulos, D.

Driessen, A.

R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).

Fauchet, P. M.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef]

Först, M.

R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).

Foster, M. A.

Fukuda, H.

Gaeta, A. L.

Gao, S.

Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011).
[CrossRef]

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 250–256 (2010).
[CrossRef]

S. Gao, E.-K. Tien, Y. Huang, and S. He, “Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide,” Opt. Express 18, 27885–27890 (2010).

S. Gao, Z. Li, E.-K. Tien, S. He, and O. Boyraz, “Performance evaluation of nondegenerate wavelength conversion in a silicon nanowire waveguide,” J. Lightwave Technol. 28, 3079–3085 (2010).

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Green, W. M.

He, S.

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
[CrossRef]

Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 250–256 (2010).
[CrossRef]

S. Gao, Z. Li, E.-K. Tien, S. He, and O. Boyraz, “Performance evaluation of nondegenerate wavelength conversion in a silicon nanowire waveguide,” J. Lightwave Technol. 28, 3079–3085 (2010).

S. Gao, E.-K. Tien, Y. Huang, and S. He, “Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide,” Opt. Express 18, 27885–27890 (2010).

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Hsieh, I.-W.

Huang, Y.

Itabashi, S.

Jalali, B.

Li, Z.

Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011).
[CrossRef]

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 250–256 (2010).
[CrossRef]

S. Gao, Z. Li, E.-K. Tien, S. He, and O. Boyraz, “Performance evaluation of nondegenerate wavelength conversion in a silicon nanowire waveguide,” J. Lightwave Technol. 28, 3079–3085 (2010).

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef]

Lipson, M.

Liu, Q.

Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011).
[CrossRef]

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
[CrossRef]

Liu, X.

Osgood, R. M.

Piredda, G.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

Raghunathan, V.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).

Salem, R.

Shoji, T.

Takahashi, J.

Takahashi, M.

Tien, E.-K.

Tsuchizawa, T.

Turner-Foster, A. C.

Usechak, N.

R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).

Vlasov, Y. A.

Watanabe, T.

Xie, Y.

Yamada, K.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

Zhang, J.

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef]

Zhang, X.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 250–256 (2010).
[CrossRef]

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).

J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 250–256 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

R. Deckker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D 40, R249–R271 (2007).

Opt. Commun. (1)

Z. Li, S. Gao, Q. Liu, and S. He, “Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators,” Opt. Commun. 284, 2215–2221 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Prog. Electromagn. Res. (1)

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

GVD profiles for the TE and TM modes in three silicon waveguides: 500nm×600nm, 600nm×600nm, and 600nm×500nm. The inset shows the silicon waveguide structure.

Fig. 2.
Fig. 2.

(a) GVD values and (b) GVD discrepancies between the TE and TM modes at 1550 nm as the waveguide width varies, for three different height-to-width ratios r=0.9, 1.0, and 1.1.

Fig. 3.
Fig. 3.

(a) Dispersion slopes and (b) slope differences at 1550 nm as the waveguide width varies, for three different height-to-width ratios r=0.9, 1.0, and 1.1.

Fig. 4.
Fig. 4.

GVD discrepancy [in units of ps/(nm·km)] between the fundamental TE and TM modes at 1550 nm as the waveguide width and height vary. The waveguide width and height are scanned in a step of 4 nm. The dished curves show the waveguide parameters to realize ZDW at 1550 nm for these two modes, respectively. The solid line shows the waveguide configuration where the GVDs are both zero for the TE and TM modes at 1550 nm.

Fig. 5.
Fig. 5.

Effective refractive indices and GVD profiles for the TE and TM modes in the optimized 780nm×795nm waveguide.

Fig. 6.
Fig. 6.

Required pump polarization angle as the signal wavelength varies when the pump wavelength is set at 1553 nm.

Fig. 7.
Fig. 7.

Region and fluctuation value of the conversion efficiency versus the signal wavelength.

Fig. 8.
Fig. 8.

Optimized pump polarization angle and the 1 dB polarization-independent bandwidth as the pump wavelength varies in (a) the 780nm×795nm waveguide and (b) 300nm×500nm waveguide.

Fig. 9.
Fig. 9.

Average efficiency fluctuations for the 1530–1570 nm signal wavelength range as the pump angle detuning varies.

Metrics