Abstract

Visible microlasers consisting of 80±20nm thick, dye-doped polymer resonators mated to a second-order, distributed feedback grating having a period of 410nm exhibit longitudinal mode and spectral characteristics that can be manipulated by microresonator design. Resonators in the form of a square, ring (annulus), or a ring with an intentionally introduced defect (π/2 section removed) have been examined with respect to the output spectrum, pump energy threshold, and relative slope efficiency of the corresponding microlaser. Although the emission of single rings and arrays of nonoverlapped rings is generally a single mode, the square geometry resonator exhibits a spectrum rich in mode structure, which is attributed partially to degeneracies associated with two coupled Fabry–Perot resonators. Similarly, arrays of coupled (overlapped) rings produce multimode spectra that are skewed toward the blue. For a fixed pump fluence, an array of coupled rings generates output energies at least 50% higher than those for its uncoupled counterpart.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
  2. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
    [CrossRef]
  3. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33, 1978–1980 (2008).
    [CrossRef]
  4. M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
    [CrossRef]
  5. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
    [CrossRef]
  6. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [CrossRef]
  7. S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
    [CrossRef]
  8. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  9. L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826(2003).
    [CrossRef]
  10. M. Hentschel and T.-Y. Kwon, “Designing and understanding directional emission from spiral microlasers,” Opt. Lett. 34, 163–165 (2009).
    [CrossRef]
  11. Y.-F. Xiao, C.-H. Dong, C.-L. Zou, Z.-F. Han, L. Yang, and G.-C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34, 509–511 (2009).
    [CrossRef]
  12. S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72, 1802–1804 (1998).
    [CrossRef]
  13. P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
    [CrossRef]
  14. H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
    [CrossRef]
  15. X. Zhang, H. Li, X. Tu, X. Wu, L. Liu, and L. Xu, “Suppression and hopping of whispering gallery modes in multiple-ring-coupled microcavity lasers,” J. Opt. Soc. Am. B 28, 483–488 (2011).
    [CrossRef]
  16. M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ∼536  nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281, 3159–3162(2008).
    [CrossRef]

2011 (1)

2010 (1)

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

2009 (2)

2008 (3)

M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ∼536  nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281, 3159–3162(2008).
[CrossRef]

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33, 1978–1980 (2008).
[CrossRef]

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

2006 (1)

P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

2003 (1)

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826(2003).
[CrossRef]

2000 (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

1998 (1)

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72, 1802–1804 (1998).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

1986 (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

1984 (1)

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Armani, D. K.

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826(2003).
[CrossRef]

Beausoleil, R. G.

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Chang, R. K.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
[CrossRef]

Chen, Y.

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Choi, S. S.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Cunningham, B. T.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ∼536  nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281, 3159–3162(2008).
[CrossRef]

Dong, C.-H.

Eden, J. G.

M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ∼536  nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281, 3159–3162(2008).
[CrossRef]

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Frolov, S. V.

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72, 1802–1804 (1998).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Guo, G.-C.

Han, Z.-F.

Hare, J.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Haroche, S.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Hentschel, M.

Jahier, E.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Ji, H.

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Kwon, T.-Y.

Lefévre-Seguin, V.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Lei, L.

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Li, H.

X. Zhang, H. Li, X. Tu, X. Wu, L. Liu, and L. Xu, “Suppression and hopping of whispering gallery modes in multiple-ring-coupled microcavity lasers,” J. Opt. Soc. Am. B 28, 483–488 (2011).
[CrossRef]

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Lissillour, F.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Liu, L.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Long, M. B.

Long, R.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Lu, M.

M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ∼536  nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281, 3159–3162(2008).
[CrossRef]

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Luo, C. X.

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Ouyang, Q.

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Park, S.-J.

M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ∼536  nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281, 3159–3162(2008).
[CrossRef]

Pauzauskie, P. J.

P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Qian, S.-X.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Raimond, J.-M.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Shi, J.

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Sirbuly, D. J.

P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Snow, J. B.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Song, M.

Tu, X.

Tzeng, H.-M.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
[CrossRef]

Vahala, K. J.

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826(2003).
[CrossRef]

Vardeny, Z. V.

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72, 1802–1804 (1998).
[CrossRef]

von Klitzing, W.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

Wagner, C. J.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Wall, K. F.

Willner, A. E.

Wu, T.

Wu, X.

Xiao, Y.-F.

Xu, L.

Yang, L.

Y.-F. Xiao, C.-H. Dong, C.-L. Zou, Z.-F. Han, L. Yang, and G.-C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34, 509–511 (2009).
[CrossRef]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826(2003).
[CrossRef]

Yang, P.

P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

Yoshino, K.

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72, 1802–1804 (1998).
[CrossRef]

Zeng, Q.

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Zhang, L.

Zhang, X.

Zou, C.-L.

Zou, L.

Appl. Phys. Lett. (4)

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826(2003).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72, 1802–1804 (1998).
[CrossRef]

J. Opt. B (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefévre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B 2, 204–206 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ∼536  nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun. 281, 3159–3162(2008).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Phys. Rev. Lett. (1)

P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

Science (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Sens. Actuators B Chem. (1)

H. Li, L. Lei, Q. Zeng, J. Shi, C. X. Luo, H. Ji, Q. Ouyang, and Y. Chen, “Laser emission from dye doped microspheres produced on a chip,” Sens. Actuators B Chem. 145, 570–574(2010).
[CrossRef]

Other (1)

R. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Cross-sectional diagram (not to scale) of the microlaser structure for a single, dye-doped ring microresonator having a mean thickness of 80nm. The refractive index (n) of each region, as well as several critical dimensions, are indicated. The device is photo-pumped at normal incidence to the plane of the grating by a frequency-doubled Nd: YAG laser. (b) Detailed cross-section of the gain medium/grating structure.

Fig. 2.
Fig. 2.

Atomic force microscope (AFM) scan of a portion of a (425μm)2 dye/SU-8 polymer gain layer fabricated on an underlying replica-molded grating with Λ=410nm.

Fig. 3.
Fig. 3.

Comparison of representative laser spectra observed for a dye-doped, continuous ring microresonator, a defect ring, and an array of coupled ring microresonators. For convenience, the spectrum recorded for an array of uncoupled (nonoverlapped) ring microresonators is also presented. All of the spectra are identified by diagrams in plan view that are not to scale but qualitatively represent the structure of the associated microlaser. The mean wavelength interval between two local maxima is indicated for the coupled ring spectrum and the pump energy fluence at which each spectrum was recorded is also given.

Fig. 4.
Fig. 4.

Expanded view of the photo-pumped laser spectra for two ring and two defect ring microresonators, all having a radius (R) of 300μm. The width of each annulus is 25μm. The only continuous ring spectrum exhibiting a secondary mode is shown but, for the sake of clarity, this spectrum has been shifted to shorter wavelengths by 1.0nm. Data are shown for two values of pump intensity, both of which are 1mJ-cm2.

Fig. 5.
Fig. 5.

Emission spectra for two microlasers, each having a square microresonator with an active area of (425μm)2. Solid circles (•) denote spectra recorded for a pump energy fluence of 0.54(±0.04)mJ-cm2 and the open circles (∘) represent data acquired at 0.74(±0.04)mJ-cm2. Several reproducible, secondary peaks are identified in panel (b) by vertical arrows.

Fig. 6.
Fig. 6.

Dependence of the relative laser output pulse energy on the 532nm laser energy fluence for a 425μm square microresonator. Error bars represent the estimated uncertainty for each measurement and the solid curve is a least-squares fit of a polynomial to the data.

Fig. 7.
Fig. 7.

Normalized laser spectra for a (425μm)2 square microresonator in contact with air (red curve), deionized water (green), and isopropyl alcohol (C3H8O, blue).

Metrics