Abstract

We propose and demonstrate a nondestructive method for loss measurement in optical guided structures. In the proposed approach, the device under test does not require connectors at its ends, thus making this technique available for both optical fibers and integrated optical waveguides. The loss measurement is feasible over a broad range, from low (0.2dB/km) to high (of the order of 1dB/mm) loss values. This method is validated through measurements performed on a microstructured holey fiber and on a photonic-crystal waveguide. The obtained results are in good agreement with theoretical calculations and measurements obtained by other approaches.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. (Wiley, 2002).
  2. R. Hui and M. O’Sullivan, Optical Fiber Measurement (Elsevier Academic, 2009).
  3. M. Tachikura, “Internal loss measurement technique for optical devices equipped with fiber connectors at both ends,” Appl. Opt. 34, 8056–8057 (1995).
    [CrossRef]
  4. R. G. Hunsperger, in Integrated Optics: Theory and Technology, 3rd ed. (Springer Verlag, New York, 1991).
  5. H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurements in thin film optical waveguides,” Appl. Opt. 12, 755–757 (1973).
    [CrossRef]
  6. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Observation of wave propagation in integrated optical circuits,” Appl. Opt. 25, 3405–3408 (1986).
    [CrossRef]
  7. R. K. Hickemell, D. R. Larson, R. J. Phelan, and L. E. Larson, “Waveguide loss measurement using photothermal deflection,” Appl. Opt. 27, 2636–2638 (1988).
    [CrossRef]
  8. R. Arsenault, D. Gregoris, S. Woolven, and V. M. Ristic, “Waveguide propagation-loss measurement technique,” Opt. Lett. 12, 1047–1049 (1987).
    [CrossRef]
  9. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguide,” Electron. Lett. 21, 581–583 (1985).
    [CrossRef]
  10. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [CrossRef]
  11. T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6, 1244–1247 (1994).
    [CrossRef]
  12. W. B. Joyce and B. C. Deloach, “Alignment of Gaussian beams,” Appl. Opt. 23, 4187–4196, (1984).
    [CrossRef]
  13. L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol. 29, 2940–2946 (2011).
    [CrossRef]
  14. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
    [CrossRef]
  15. M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008).
    [CrossRef]
  16. S. Combrié, E. Weidner, A. De Rossi, S. Bansropun, and S. Cassette, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express 14, 7353–7361 (2006).
    [CrossRef]
  17. J.-I. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1066 (1980).
    [CrossRef]
  18. A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

2011 (1)

2009 (1)

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

2008 (1)

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008).
[CrossRef]

2006 (1)

1995 (1)

1994 (1)

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6, 1244–1247 (1994).
[CrossRef]

1988 (1)

1987 (1)

1986 (1)

1985 (2)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguide,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

1984 (1)

1980 (1)

J.-I. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1066 (1980).
[CrossRef]

1973 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. (Wiley, 2002).

Akrout, A.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Armaroli, A.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Arsenault, R.

Bansropun, S.

Bellanca, G.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Berghmans, F.

Bramerie, L.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Cassette, S.

Chanclou, P.

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008).
[CrossRef]

Colman, P.

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

Combrié, S.

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

S. Combrié, E. Weidner, A. De Rossi, S. Bansropun, and S. Cassette, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express 14, 7353–7361 (2006).
[CrossRef]

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

De Rossi, A.

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

S. Combrié, E. Weidner, A. De Rossi, S. Bansropun, and S. Cassette, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express 14, 7353–7361 (2006).
[CrossRef]

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Deloach, B. C.

Dunn, F. A.

Feuchter, T.

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6, 1244–1247 (1994).
[CrossRef]

Gay, M.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Gregoris, D.

Hickemell, R. K.

Hui, R.

R. Hui and M. O’Sullivan, Optical Fiber Measurement (Elsevier Academic, 2009).

Hunsperger, R. G.

R. G. Hunsperger, in Integrated Optics: Theory and Technology, 3rd ed. (Springer Verlag, New York, 1991).

Jaroszewicz, L. R.

Joyce, W. B.

Kimura, T.

J.-I. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1066 (1980).
[CrossRef]

Larson, D. R.

Larson, L. E.

Leibolt, W. N.

Lengle, K.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Malaguti, S.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Marc, P.

Mergo, P.

Murawski, M.

Nasilowski, T.

Nguyen, T. N.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

O’Sullivan, M.

R. Hui and M. O’Sullivan, Optical Fiber Measurement (Elsevier Academic, 2009).

Okamura, Y.

Phelan, R. J.

Quetel, L.

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Ristic, V. M.

Rochard, P.

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008).
[CrossRef]

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Sakai, J.-I.

J.-I. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1066 (1980).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Stasiewicz, K.

Szymanski, M.

Tachikura, M.

Thienpont, H.

Thirstrup, C.

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6, 1244–1247 (1994).
[CrossRef]

Thual, M.

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008).
[CrossRef]

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Tran, Q. V.

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

Trillo, S.

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Urbanczyk, W.

Walker, R. G.

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguide,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

Weber, H. P.

Weidner, E.

Woolven, S.

Yamamoto, S.

Yoshinaka, S.

Appl. Opt. (5)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

Electron. Lett. (1)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguide,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

Fiber Integr. Opt. (1)

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on micro-lensed fibers for modes coupling,” Fiber Integr. Opt. 27, 532–541 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J.-I. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE J. Quantum Electron. 16, 1059–1066 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6, 1244–1247 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Other (4)

R. G. Hunsperger, in Integrated Optics: Theory and Technology, 3rd ed. (Springer Verlag, New York, 1991).

G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. (Wiley, 2002).

R. Hui and M. O’Sullivan, Optical Fiber Measurement (Elsevier Academic, 2009).

A. Akrout, K. Lengle, T. N. Nguyen, P. Rochard, L. Bramerie, M. Gay, M. Thual, S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, and A. De Rossi, “Coupling between PhC membrane and lensed fiber: simulations and measurements,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), pp. 137–138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Principle of loss measurement technique.

Fig. 2.
Fig. 2.

Setup of measurements in step 2 (a) and in step 5 (b) when the DUT is a waveguide. PM: powermeter.

Fig. 3.
Fig. 3.

Experimental setup of loss measurement in waveguides. PC, polarisation controller; LD, Laser diode; and PM, powermeter.

Tables (3)

Tables Icon

Table 1. Different Steps of Measurement and Associated Identifiable Values

Tables Icon

Table 2. Measurements and Associated Calculated Losses

Tables Icon

Table 3. Power Measurements (dBm) for Microstructured Holey Silica Fiber

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L BC + L CD + L DE = L BE = L AF L AB L EF ,
L BC + L CD = L BD = L AD L AB ,
L CD + L DE = L CE = L CF L EF .
L BC + L CD + L DE = 7.72 0.5 0.5 = 6.72 ,
L BC + L CD = 4.08 ,
L CD + L DE = 3.82 .

Metrics