Abstract

We investigate optical properties of a gold structure comprising a two-dimensional array of gold nanoblocks placed on top of a thin gold film. We observe enhanced transmission through asymmetric nanostructured gold films, which can be attributed to the surface plasmon (SP) mode at the air-gold interface leaking to the substrate when the substrate index is larger than the superstrate index. When the substrate and superstrate are the same dielectric, the SPs at both superstrate-gold and gold-substrate interfaces strongly interact with each other and even and odd SPs are then excited. In addition, we investigate effects of oblique incidence and electronic interband transition on SP resonances. Our results provide a guideline for engineering novel devices with enhanced transmission based on nanostructures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  3. F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  4. J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
    [CrossRef]
  5. W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
  6. W.-C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002).
    [CrossRef]
  7. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
    [CrossRef]
  8. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000).
    [CrossRef]
  9. A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12, 5881–5886 (2004).
    [CrossRef]
  10. D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
    [CrossRef]
  11. D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
    [CrossRef]
  12. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
    [CrossRef]
  13. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
    [CrossRef]
  14. M. M. Dvoynenko, I. I. Samoylenko, and J.-K. Wang, “Suppressed light transmission through corrugated metal films at normal incidence,” J. Opt. Soc. Am. A 23, 2315–2319 (2006).
    [CrossRef]
  15. H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007).
    [CrossRef]
  16. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26, B111–B119 (2009).
    [CrossRef]
  17. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19, 3627–3636 (2011).
    [CrossRef]
  18. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
    [CrossRef]
  19. A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004).
    [CrossRef]
  20. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
    [CrossRef]
  21. B. Bai, L. Li, and L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes” Opt. Lett. 30, 2360–2362(2005).
    [CrossRef]
  22. Y. Jourlin, S. Tonchev, A. V. Tishchenko, C. Pedri, C. Veillas, O. Parriaux, A. Last, and Y. Lacroute, “Spatially and polarization resolved plasmon mediated transmission through continuous metal films,” Opt. Express 17, 12155–12166 (2009).
    [CrossRef]
  23. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express 16, 2415–2422 (2008).
    [CrossRef]
  24. H. L. Chen, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Ku, and Y. F. Chou, “Extraordinary transmittance in three-dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films,” Opt. Express 17, 1636–1645 (2009).
    [CrossRef]
  25. S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A: Pure Appl. Opt. 9, 348–351 (2007).
    [CrossRef]
  26. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75, 235426 (2007).
    [CrossRef]
  27. P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007).
    [CrossRef]
  28. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18, 305703 (2007).
    [CrossRef]
  29. J. Beermann, S. M. Novikov, T. Søndergaard, J. Rafaelsen, K. Pedersen, and S. I. Bozhevolnyi, “Localized field enhancements in two-dimensional V-groove metal arrays,” J. Opt. Soc. Am. B 28, 372–378 (2011).
    [CrossRef]
  30. J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi C 2, 3983–3987 (2005).
    [CrossRef]
  31. A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
    [CrossRef]
  32. A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
    [CrossRef]
  33. G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
    [CrossRef]
  34. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007).
    [CrossRef]
  35. L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B 143, 76–86 (2009).
    [CrossRef]
  36. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
    [CrossRef]
  37. N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
    [CrossRef]
  38. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705(2009).
    [CrossRef]
  39. A. Hohenau and J. R. Krenn, “Plasmonic modes of gold nano-particle arrays on thin gold films,” Phys. Status Solidi RRL 4, 256–258 (2010).
    [CrossRef]
  40. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [CrossRef]
  41. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
    [CrossRef]
  42. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
    [CrossRef]
  43. S. A. Maiera and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  44. R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17, 24112–24129 (2009).
    [CrossRef]
  45. Lumerical, “FDTD solution online help,” http://www.lumerical.com/ .
  46. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  47. Z. Wang, Z. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80, 438C443 (2006).
    [CrossRef]
  48. A. Pinchuk, G. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139(2004).
    [CrossRef]

2011 (3)

2010 (2)

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Hohenau and J. R. Krenn, “Plasmonic modes of gold nano-particle arrays on thin gold films,” Phys. Status Solidi RRL 4, 256–258 (2010).
[CrossRef]

2009 (6)

2008 (2)

S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express 16, 2415–2422 (2008).
[CrossRef]

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

2007 (9)

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A: Pure Appl. Opt. 9, 348–351 (2007).
[CrossRef]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75, 235426 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18, 305703 (2007).
[CrossRef]

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007).
[CrossRef]

2006 (2)

M. M. Dvoynenko, I. I. Samoylenko, and J.-K. Wang, “Suppressed light transmission through corrugated metal films at normal incidence,” J. Opt. Soc. Am. A 23, 2315–2319 (2006).
[CrossRef]

Z. Wang, Z. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80, 438C443 (2006).
[CrossRef]

2005 (6)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

S. A. Maiera and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

B. Bai, L. Li, and L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes” Opt. Lett. 30, 2360–2362(2005).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi C 2, 3983–3987 (2005).
[CrossRef]

2004 (8)

A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004).
[CrossRef]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12, 5881–5886 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
[CrossRef]

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

A. Pinchuk, G. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139(2004).
[CrossRef]

2003 (2)

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
[CrossRef]

2002 (2)

W.-C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

2000 (2)

I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).

1999 (1)

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Atanasov, P. A.

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18, 305703 (2007).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

S. A. Maiera and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Aubard, J.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

Aussenegg, F. R.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

Avrutsky, I.

Bai, B.

Barbillon, G.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Barnard, E. S.

Barnes, W. L.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12, 5881–5886 (2004).
[CrossRef]

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Beermann, J.

J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, J. Rafaelsen, K. Pedersen, and S. I. Bozhevolnyi, “Localized field enhancements in two-dimensional V-groove metal arrays,” J. Opt. Soc. Am. B 28, 372–378 (2011).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705(2009).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi C 2, 3983–3987 (2005).
[CrossRef]

Bijeon, J.-L.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Biswas, R.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Bonod, N.

Bozhevolnyi, S. I.

J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, J. Rafaelsen, K. Pedersen, and S. I. Bozhevolnyi, “Localized field enhancements in two-dimensional V-groove metal arrays,” J. Opt. Soc. Am. B 28, 372–378 (2011).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705(2009).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi C 2, 3983–3987 (2005).
[CrossRef]

Brongersma, M. L.

Cai, Z.

Z. Wang, Z. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80, 438C443 (2006).
[CrossRef]

Chen, H. L.

Chen, Q.

Z. Wang, Z. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80, 438C443 (2006).
[CrossRef]

Chou, Y. F.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chuang, S. Y.

Cui, B.

Daly, J.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

de Fornel, F.

Descamps, A.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Devaux, E.

J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

Ding, C. G.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Dvoynenko, M. M.

Dykhne, A. M.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Ebbesen, T. W.

J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

El Kork, N.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Enoch, S.

Faure, A. C.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Felidj, N.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

Frenner, K.

Fu, L.

García de Abajo, F. J.

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Gérard, D.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Giannattasio, A.

Giessen, H.

Gräeldinger, H.

H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007).
[CrossRef]

Greenwald, A.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Guo, H.

H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

Hohenau, A.

A. Hohenau and J. R. Krenn, “Plasmonic modes of gold nano-particle arrays on thin gold films,” Phys. Status Solidi RRL 4, 256–258 (2010).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

Hooper, I. R.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12, 5881–5886 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Hryciw, A. C.

Jacquier, B.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Johnson, E.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jourlin, Y.

Kabashin, A.

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B 143, 76–86 (2009).
[CrossRef]

Kaiser, S.

H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007).
[CrossRef]

Kats, A. V.

A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004).
[CrossRef]

Kekatpure, R. D.

Kochergin, V.

Kreibig, U.

A. Pinchuk, G. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139(2004).
[CrossRef]

Krenn, J. R.

A. Hohenau and J. R. Krenn, “Plasmonic modes of gold nano-particle arrays on thin gold films,” Phys. Status Solidi RRL 4, 256–258 (2010).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

Ku, S. L.

Kuipers, L.

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Kuo, S. S.

Lacroute, Y.

Lai, Y. H.

Last, A.

Lee, C. C.

Lee, W. H.

Leitner, A.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

Leosson, K.

Levi, G.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, L.

Liu, N.

H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007).
[CrossRef]

Liu, W.-C.

W.-C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002).
[CrossRef]

Maiera, S. A.

S. A. Maiera and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Malic, L.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Marquette, C. A.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Martin-Moreno, L.

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

McNeal, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Moretti, P.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Nedyalkov, N. N.

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18, 305703 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007).
[CrossRef]

Nevière, M.

Nikitin, A. Y.

A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004).
[CrossRef]

Novikov, S. M.

Obara, M.

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18, 305703 (2007).
[CrossRef]

Osten, W.

Ou, M. G.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Papanikolaou, N.

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Parriaux, O.

Pedersen, K.

Pedri, C.

Perriat, P.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Pinchuk, A.

A. Pinchuk, G. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139(2004).
[CrossRef]

Plessen, G.

A. Pinchuk, G. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139(2004).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Popov, E.

Pralle, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Preist, T. W.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).

Puscasu, I.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Qiu, M.

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A: Pure Appl. Opt. 9, 348–351 (2007).
[CrossRef]

Rafaelsen, J.

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

Roux, S.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Sage, I.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Sakai, T.

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007).
[CrossRef]

Salomon, L.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

Sambles, R. J.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).

Samoylenko, I. I.

Sarychev, A. K.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Schau, P.

Schider, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

Schröter, U.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

Schweizer, H.

Shalaev, V. M.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Shi, L.

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B 143, 76–86 (2009).
[CrossRef]

Skorobogatiy, M.

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B 143, 76–86 (2009).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Sndergaard, T.

J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

Søndergaard, T.

Su, W. F.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Tabrizian, M.

Tan, W.-C.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tillement, O.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Tishchenko, A. V.

Tonchev, S.

Truong, S. L.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

Tsai, D. P.

W.-C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002).
[CrossRef]

Veillas, C.

Veres, T.

Vial, A.

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Wang, J.-K.

Wang, Z.

Z. Wang, Z. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80, 438C443 (2006).
[CrossRef]

Wedge, S.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Weiss, T.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xiao, S.

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A: Pure Appl. Opt. 9, 348–351 (2007).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
[CrossRef]

Zeng, L.

Zhao, Y.

Appl. Surf. Sci. (1)

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates,” Appl. Surf. Sci. 254, 794–798 (2007).
[CrossRef]

J. Appl. Phys. (2)

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

S. A. Maiera and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Chem. Phys. (1)

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys. 120, 7141–7146 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A: Pure Appl. Opt. 9, S366–S371(2007).
[CrossRef]

S. Xiao and M. Qiu, “Theoretical study of the transmission properties of a metallic film with surface corrugations,” J. Opt. A: Pure Appl. Opt. 9, 348–351 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

A. Pinchuk, G. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139(2004).
[CrossRef]

Nanotechnology (2)

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18, 305703 (2007).
[CrossRef]

G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. G. Ou, A. Descamps, P. Perriat, A. Vial, J.-L. Bijeon, C. A. Marquette, and B. Jacquier, “How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence,” Nanotechnology 19, 035705 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

New J. Phys. (1)

J. Beermann, T. Sndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

Opt. Express (9)

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19, 3627–3636 (2011).
[CrossRef]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12, 5881–5886 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652–3663 (2004).
[CrossRef]

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
[CrossRef]

Y. Jourlin, S. Tonchev, A. V. Tishchenko, C. Pedri, C. Veillas, O. Parriaux, A. Last, and Y. Lacroute, “Spatially and polarization resolved plasmon mediated transmission through continuous metal films,” Opt. Express 17, 12155–12166 (2009).
[CrossRef]

S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express 16, 2415–2422 (2008).
[CrossRef]

H. L. Chen, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Ku, and Y. F. Chou, “Extraordinary transmittance in three-dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films,” Opt. Express 17, 1636–1645 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705(2009).
[CrossRef]

R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17, 24112–24129 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Phys. Rev. B (13)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66, 245407 (2002).
[CrossRef]

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).

W.-C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002).
[CrossRef]

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69, 245418 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[CrossRef]

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[CrossRef]

A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004).
[CrossRef]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Phys. Status Solidi C (1)

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi C 2, 3983–3987 (2005).
[CrossRef]

Phys. Status Solidi RRL (1)

A. Hohenau and J. R. Krenn, “Plasmonic modes of gold nano-particle arrays on thin gold films,” Phys. Status Solidi RRL 4, 256–258 (2010).
[CrossRef]

Phys. Status Solidi. A (1)

H. Schweizer, L. Fu, H. Gräeldinger, H. Guo, N. Liu, S. Kaiser, and H. Giessen, “Negative permeability around 630 nm in nanofabricated meander metamaterials,” Phys. Status Solidi. A 204, 3886–3900 (2007).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Sens. Actuators B (1)

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B 143, 76–86 (2009).
[CrossRef]

Vacuum (1)

Z. Wang, Z. Cai, Q. Chen, and L. Li, “Optical properties of metal-dielectric multilayers in the near UV region,” Vacuum 80, 438C443 (2006).
[CrossRef]

Other (1)

Lumerical, “FDTD solution online help,” http://www.lumerical.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the investigated structure. The light steel blue and golden, respectively, denote the substrate and gold. The structure comprises a square array of hb-high gold blocks placed on top of a hf-thick gold film on a semi-infinite glass substrate. The block side length SL and lattice constant P are comparable to the operation wavelength which is from 660 to 920 nm. Incident planewave is propagating along the z direction from the upper.

Fig. 2.
Fig. 2.

Reflection (thin solid curves), transmission (thick solid curves) and absorption (dash curves) spectra of the gold film with gold block arrays for various values of the lattice constant P=6501200nm. The side length of square gold block is d=300nm, the block height is hb=50nm, and the gold film thickness is hf=50nm. (a1) The vertical dot-dashed curves are wavelengths of plasmon resonance of a (1,0) mode at the air-gold interface. (a2) The vertical dashed curves are wavelengths of plasmon resonance of a (1,1) mode at the gold-substrate interface according to Eq. (2). (b1) The vertical dot-dashed curves are wavelengths of plasmon resonance of a (1,1) mode at the air-gold interface. (b2) The thin and thick vertical dashed curves are, respectively, wavelengths of plasmon resonance of a (2,0) and (2,1) mode at the gold-substrate interface according to Eq. (2).

Fig. 3.
Fig. 3.

Dispersion of SPs at the interfaces of a gold film with air cladding and a glass substrate. Vertical curves are the transverse momentum of the wave vectors. The insets are the distribution of the electric field intensity |E|2 at SP resonances from FDTD. (a) For P=750nm. (b) For P=1050nm.

Fig. 4.
Fig. 4.

Distribution of field in the vicinity of a gold film. (a) The electric field intensity |E|2 distribution of SP resonance A in yz plane cut through the center of the gold block. (b) The electric field component Ex distribution of SP resonance A in xz plane cut through the center of the gold block. (c) The same as (a) except for SP resonance B. (d) The same as (b) except for SP resonance B.

Fig. 5.
Fig. 5.

Reflection (thin solid) and transmission (thick solid) spectra of the gold film with gold block array for various substrate indices n=1.0 (air), 1.46 (glass), 1.7 (polyimide), and 2 (Si3N4). Also plotted are wavelengths of plasmon resonance of a mode at the air-gold (dot-dashed curves) and gold-substrate (dashed curves) interface from Eqs. (1), (2) and (3). The inset is the dispersion of a gold film in the air.

Fig. 6.
Fig. 6.

Distribution of the electric field component Ez in the yz plane cut through the center of the gold block at the wavelengths of (a) the first plasmon resonance (763.4 nm) and (b) the second plasmon resonance (778.62 nm) for the case where both substrate and superstrate are air in Fig. 5.

Fig. 7.
Fig. 7.

Reflection (thin curves), transmission (thick curves) and absorption (dash curves) spectra of the gold film with gold block arrays for various superstrate indices n=1.46 (glass), 1.7 (polyimide), and 2 (Si3N4). Also plotted are wavelengths (dash-dot curves) of plasmon resonance of modes at interfaces from Eqs. (1)–(3). (a) The substrate is air and (b) the substrate is glass.

Fig. 8.
Fig. 8.

Reflection (a) and transmission (b) of the gold film with gold block array for wavelengths between 720–850 nm with a source angle of incidence between 0–60 deg. We also plot wavelengths of plasmon resonance of a mode at the air-gold (dashed curves) and gold-substrate (dot-dashed curves) interface from Eqs. (1), (2) and (3).

Fig. 9.
Fig. 9.

(a) The fields with (red) or without (blue) the influence of interband electronic transitions versus time at some point. The lattice constant is P=750nm. The side length of square gold block is d=300nm, the block height is hb=50nm, and the gold film thickness is hf=50nm. (b) Reflection and transmission spectra with (dash) and without (solid) the influence of interband electronic transitions. The structure parameters are the same as Fig. 9(a) except the lattice constant is P=650850nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

|kxyinksp|=2πP(m2+n2)1/2,
e2kzmd=(ϵ(ω)kz1+ϵ1kzm)(ϵ(ω)kzs+ϵskzm)(ϵ(ω)kz1ϵ1kzm)(ϵ(ω)kzsϵskzm),
ksp=ωc[ϵ(ω)+kzm2]1/2,

Metrics