Abstract

Invisibility cloaks designed by transformation optics include a perfect shield, which exclude electromagnetic fields from the cloaked region. Due to the shield, observers inside the cloak cannot see the outside. We propose a cloak that permits communication with the outside, based on a layered photonic crystal (PC) structure. The PC acts as an effective shield in the reflection bandgap, leaving the transmission band available for communication with the outside. A procedure to design an infinitely long cylindrical cloak consisting of concentric layers of dielectric and metal is given. For the proposed structure, the performance of cloaking in the reflection band and of communication in the transmission band is computed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef]
  3. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
    [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef]
  5. S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
    [CrossRef]
  6. Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16, 6717–6730 (2008).
    [CrossRef]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [CrossRef]
  8. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
    [CrossRef]
  9. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
    [CrossRef]
  10. Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
    [CrossRef]
  11. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).
  12. W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” Nat. Photonics 25, 968–973 (2008).
    [CrossRef]
  13. C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
    [CrossRef]
  14. P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92, 031111 (2008).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  16. H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
    [CrossRef]
  17. H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603–14608 (2008).
    [CrossRef]
  18. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
    [CrossRef]
  19. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [CrossRef]
  20. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
    [CrossRef]
  21. A. Yaroslav and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett. 105, 163901 (2010).
    [CrossRef]
  22. H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011).
    [CrossRef]
  23. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
    [CrossRef]
  24. S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
    [CrossRef]
  25. V. N. Smolyaninova, I. I. Smolyaninov, and H. K. Ermer, “Experimental demonstration of a broadband array of invisibility cloaks in the visible frequency range,” New J. Phys. 14, 053029(2012).
    [CrossRef]
  26. B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metaldielectric system,” Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  27. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

2012

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef]

V. N. Smolyaninova, I. I. Smolyaninov, and H. K. Ermer, “Experimental demonstration of a broadband array of invisibility cloaks in the visible frequency range,” New J. Phys. 14, 053029(2012).
[CrossRef]

2011

H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011).
[CrossRef]

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
[CrossRef]

2010

A. Yaroslav and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett. 105, 163901 (2010).
[CrossRef]

2009

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

2008

2007

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[CrossRef]

2006

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metaldielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Alu, A.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef]

Argyropoulos, C.

Barbastathis, G.

H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011).
[CrossRef]

Barber, P. W.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Chan, C. T.

Chen, H.

Chen, P. Y.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Cui, T. J.

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D’Aguanno, G.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef]

Enoch, S.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef]

Ermer, H. K.

V. N. Smolyaninova, I. I. Smolyaninov, and H. K. Ermer, “Experimental demonstration of a broadband array of invisibility cloaks in the visible frequency range,” New J. Phys. 14, 053029(2012).
[CrossRef]

Farhat, M.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef]

Feng, Y.

Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
[CrossRef]

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Gao, H.

H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011).
[CrossRef]

Guenneau, S.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef]

Hao, Y.

Hill, S. C.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

Huang, Y.

Jiang, T.

Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
[CrossRef]

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[CrossRef]

Jiang, X.

P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92, 031111 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Kallos, E.

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Leonhardt, U.

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Liang, Z.

P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92, 031111 (2008).
[CrossRef]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Liu, R.

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).

Luo, X.

Ma, H.

H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603–14608 (2008).
[CrossRef]

McPhedran, R. C.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

Milton, G. W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Monticone, F.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef]

Movchan, A. B.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008).
[CrossRef]

Nicorovici, N. A. P.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

Pendry, J. B.

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metaldielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Popa, B. L.

S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Qiu, M.

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” Nat. Photonics 25, 968–973 (2008).
[CrossRef]

Qu, S.

H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Ruan, Z.

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” Nat. Photonics 25, 968–973 (2008).
[CrossRef]

Schurig, D.

S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Smith, D. R.

A. Yaroslav and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett. 105, 163901 (2010).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).

Smolyaninov, I. I.

V. N. Smolyaninova, I. I. Smolyaninov, and H. K. Ermer, “Experimental demonstration of a broadband array of invisibility cloaks in the visible frequency range,” New J. Phys. 14, 053029(2012).
[CrossRef]

Smolyaninova, V. N.

V. N. Smolyaninova, I. I. Smolyaninov, and H. K. Ermer, “Experimental demonstration of a broadband array of invisibility cloaks in the visible frequency range,” New J. Phys. 14, 053029(2012).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Wang, J.

H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Wood, B.

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metaldielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Xu, X.

Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
[CrossRef]

Xu, Z.

H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Yan, M.

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” Nat. Photonics 25, 968–973 (2008).
[CrossRef]

Yan, W.

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” Nat. Photonics 25, 968–973 (2008).
[CrossRef]

Yao, P.

P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92, 031111 (2008).
[CrossRef]

Yaroslav, A.

A. Yaroslav and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett. 105, 163901 (2010).
[CrossRef]

Yu, Z.

Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, B.

H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Zhao, J.

Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92, 031111 (2008).
[CrossRef]

H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

J. Opt.

S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011).
[CrossRef]

J. Phys. D

Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011).
[CrossRef]

Nat. Mater.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Nat. Photonics

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” Nat. Photonics 25, 968–973 (2008).
[CrossRef]

New J. Phys.

V. N. Smolyaninova, I. I. Smolyaninov, and H. K. Ermer, “Experimental demonstration of a broadband array of invisibility cloaks in the visible frequency range,” New J. Phys. 14, 053029(2012).
[CrossRef]

Opt. Commun.

H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metaldielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Phys. Rev. E

S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Phys. Rev. Lett.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[CrossRef]

A. Yaroslav and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett. 105, 163901 (2010).
[CrossRef]

Prog. Opt.

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

Science

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Supplementary Material (2)

» Media 1: MOV (2037 KB)     
» Media 2: MOV (3317 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Invisibility cloaks with (a) PEC shield and (b) photonic crystal (PC). Whereas the PEC reflects light of all wavelengths, the PC permits communication between the inside and outside in the transmission band.

Fig. 2.
Fig. 2.

Infinitely-long cylindrical cloak with PC for TM plane wave incidence. (a) Alternating layered structure consisting of dielectric (relative permittivity=εD) and metal (relative permittivity=εM). Six inside and six outside layers act as the PC and cloak, respectively. Thickness of the six PC layers is t0. Thicknesses of the six cloak layers are t1,t2,,t6, respectively. Electromagnetic fields E, H, and the wave vector k are depicted. (b) Transmission spectrum for the six-layered 1D PC with t0=20nm.

Fig. 3.
Fig. 3.

Calculated magnetic field distribution for the designed cloak with a PC (incident wavelength=700nm). (a) Hz field (Media 1). (b) Hz intensity. (c) Scattering widths for the designed cloak and an uncloaked PEC cylinder with R=500nm.

Fig. 4.
Fig. 4.

Transmission spectrum for the 12-layer radially 1D structure, which includes designed thicknesses, t0,t1,,t6. We set 198 nm to be the communication wavelength.

Fig. 5.
Fig. 5.

FDTD simulation of the designed cloak with a PC. (a) Simulation setup. (b) Calculated Hz field distribution at the steady state using the wavelength of 198 nm (Media 2).

Tables (1)

Tables Icon

Table 1. Relations of Layers, Materials and Thicknesses in Designed Structure, with D and M Indicating the Dielectric and Metal, Respectively

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

εθ=(bba)2,εr=(bba)2(rar)2,μz=1,
εθ=εD+ηεM1+η,1εr=11+η(1εD+ηεM),
εM=1ωp2ω2,
Hz0=n=inJn(k0r)einϕ,
Hzs=n=incnHn(1)(k0r)einϕ,
Hzi=n=indnJn(k0r)einϕ,
Hzm=n=in(anmJn(kmr)+bnmHn(1)(kmr))einϕ,
Eϕ=1iωεHzr.
σ(ϕ)=limr2πr|Hzs|2|Hz0|2.
σt=σdϕ.

Metrics