Abstract

The optical response of a two-phase composite consisting of Au nanoparticles (AuNPs) in a nanocrystalline ZnO thin film matrix has been systematically studied and analyzed by the Bergman–Milton spectral density formalism. The real and imaginary parts of the effective dielectric function exhibited anomalous dispersion and absorption, respectively, at the characteristic localized surface plasmon resonance (LSPR) wavelength. A multilayer structure consisting of two AuNP–ZnO composite films separated by a thin ZnO film displayed a twofold increase in the absorption at LSPR (with negligible change in FWHM), which is attributed to the increase in the number density of the AuNPs resulting from the nanocrystalline nature of the ZnO film. The results have been used to correlate the spectral density function to the morphology of AuNPs in a ZnO matrix.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [CrossRef]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
    [CrossRef]
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  5. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
    [CrossRef]
  6. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
    [CrossRef]
  7. G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, “Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,” J. Opt. Soc. Am. B 25, 945–950 (2008).
    [CrossRef]
  8. V. M. Shalaev and A. K. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
    [CrossRef]
  9. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
    [CrossRef]
  10. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
    [CrossRef]
  11. B. Houng, “Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique,” Appl. Phys. Lett. 87, 251922 (2005).
    [CrossRef]
  12. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
    [CrossRef]
  13. V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
    [CrossRef]
  14. D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
    [CrossRef]
  15. G. W. Milton, “Bounds on the effective permittivity of a two-component composite material,” J. Appl. Phys. 52, 5286–5293 (1981).
    [CrossRef]
  16. C. Liu and L. C. Shen, “Dielectric constant of two component, two-dimensional mixtures in terms of Bergman-Milton simple poles,” J. Appl. Phys. 73, 1897–1903 (1993).
    [CrossRef]
  17. C. Liu and H. Wu, “Computation of the effective dielectric constant of two-component, three-dimensional mixtures using a simple pole expansion method,” J. Appl. Phys. 82, 345–350 (1997).
    [CrossRef]
  18. D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19, 2359–2368 (1979).
    [CrossRef]
  19. D. Ross and R. Aroca, “Effective medium theories in surface enhanced infrared spectroscopy: the pentacene example,” J. Chem. Phys. 117, 8095–8103 (2002).
    [CrossRef]
  20. A. Patra, V. D. Das, and S. Kasiviswanathan, “Optical and photoluminescence studies of gold nanoparticles embedded ZnO thin films,” Thin Solid Films 518, 1399–1401 (2009).
    [CrossRef]
  21. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  23. E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994).
    [CrossRef]
  24. A. Paul and H. N. Acharya, “Equilibrium thermodynamics of nonstoichiometry in ZnO and aluminum doping of ZnO using aluminum chloride,” J. Mater. Sci. 27, 1716–1722 (1992).
    [CrossRef]
  25. H. Iwasaki, “Study on the ordered phases with long period in the gold-zinc alloy system, II. structure of Au3Zn[R1], Au3Zn[R2] and Au3+Zn,” J. Phys. Soc. Jpn. 17, 1620–1633 (1962).
    [CrossRef]
  26. W. H. Qi and M. P. Wang, “Size and shape dependent lattice parameters of metallic nanoparticles,” J. Nanopart. Res. 7, 51–57 (2005).
    [CrossRef]
  27. A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
    [CrossRef]
  28. J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928 (2010).
    [CrossRef]
  29. J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
    [CrossRef]
  30. H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22, 1923–1926 (2005).
    [CrossRef]
  31. K. H. Su, Q. H. Wei, and X. Zang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
    [CrossRef]
  32. M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
    [CrossRef]

2011 (3)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

2010 (1)

2009 (1)

A. Patra, V. D. Das, and S. Kasiviswanathan, “Optical and photoluminescence studies of gold nanoparticles embedded ZnO thin films,” Thin Solid Films 518, 1399–1401 (2009).
[CrossRef]

2008 (3)

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, “Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,” J. Opt. Soc. Am. B 25, 945–950 (2008).
[CrossRef]

2007 (2)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

2006 (1)

K. H. Su, Q. H. Wei, and X. Zang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

2005 (3)

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22, 1923–1926 (2005).
[CrossRef]

W. H. Qi and M. P. Wang, “Size and shape dependent lattice parameters of metallic nanoparticles,” J. Nanopart. Res. 7, 51–57 (2005).
[CrossRef]

B. Houng, “Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique,” Appl. Phys. Lett. 87, 251922 (2005).
[CrossRef]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

2002 (1)

D. Ross and R. Aroca, “Effective medium theories in surface enhanced infrared spectroscopy: the pentacene example,” J. Chem. Phys. 117, 8095–8103 (2002).
[CrossRef]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

1999 (1)

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

1998 (1)

V. M. Shalaev and A. K. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[CrossRef]

1997 (4)

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

C. Liu and H. Wu, “Computation of the effective dielectric constant of two-component, three-dimensional mixtures using a simple pole expansion method,” J. Appl. Phys. 82, 345–350 (1997).
[CrossRef]

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

1994 (1)

E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994).
[CrossRef]

1993 (1)

C. Liu and L. C. Shen, “Dielectric constant of two component, two-dimensional mixtures in terms of Bergman-Milton simple poles,” J. Appl. Phys. 73, 1897–1903 (1993).
[CrossRef]

1992 (1)

A. Paul and H. N. Acharya, “Equilibrium thermodynamics of nonstoichiometry in ZnO and aluminum doping of ZnO using aluminum chloride,” J. Mater. Sci. 27, 1716–1722 (1992).
[CrossRef]

1981 (1)

G. W. Milton, “Bounds on the effective permittivity of a two-component composite material,” J. Appl. Phys. 52, 5286–5293 (1981).
[CrossRef]

1979 (1)

D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19, 2359–2368 (1979).
[CrossRef]

1978 (1)

D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1962 (1)

H. Iwasaki, “Study on the ordered phases with long period in the gold-zinc alloy system, II. structure of Au3Zn[R1], Au3Zn[R2] and Au3+Zn,” J. Phys. Soc. Jpn. 17, 1620–1633 (1962).
[CrossRef]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Acharya, H. N.

A. Paul and H. N. Acharya, “Equilibrium thermodynamics of nonstoichiometry in ZnO and aluminum doping of ZnO using aluminum chloride,” J. Mater. Sci. 27, 1716–1722 (1992).
[CrossRef]

Aroca, R.

D. Ross and R. Aroca, “Effective medium theories in surface enhanced infrared spectroscopy: the pentacene example,” J. Chem. Phys. 117, 8095–8103 (2002).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

Bastiaansen, C.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

Bergman, D. J.

D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19, 2359–2368 (1979).
[CrossRef]

D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
[CrossRef]

Boyd, R. W.

Brandow, S. L.

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Calvert, J. M.

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

Caseri, W.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Das, V. D.

A. Patra, V. D. Das, and S. Kasiviswanathan, “Optical and photoluminescence studies of gold nanoparticles embedded ZnO thin films,” Thin Solid Films 518, 1399–1401 (2009).
[CrossRef]

Decher, G.

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

Demin, V. I.

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Dirix, Y.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

Dravin, V. A.

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Dressick, W. J.

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

Elbahri, M.

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

Fu, J. S.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

Funston, A. M.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Garcia de Abajo, F. J.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Geer, R. E.

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

Georgobiani, A. A.

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Gorges, E.

E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Grosse, P.

E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994).
[CrossRef]

Gruzintsev, A. N.

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Gushchin, I. F.

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

Houng, B.

B. Houng, “Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique,” Appl. Phys. Lett. 87, 251922 (2005).
[CrossRef]

Iwasaki, H.

H. Iwasaki, “Study on the ordered phases with long period in the gold-zinc alloy system, II. structure of Au3Zn[R1], Au3Zn[R2] and Au3+Zn,” J. Phys. Soc. Jpn. 17, 1620–1633 (1962).
[CrossRef]

Jamali, M.

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

Janicki, V.

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kasiviswanathan, S.

A. Patra, V. D. Das, and S. Kasiviswanathan, “Optical and photoluminescence studies of gold nanoparticles embedded ZnO thin films,” Thin Solid Films 518, 1399–1401 (2009).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Koel, B. E.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Koel, B. K.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Liao, H.

Liao, H. B.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

Liu, C.

C. Liu and H. Wu, “Computation of the effective dielectric constant of two-component, three-dimensional mixtures using a simple pole expansion method,” J. Appl. Phys. 82, 345–350 (1997).
[CrossRef]

C. Liu and L. C. Shen, “Dielectric constant of two component, two-dimensional mixtures in terms of Bergman-Milton simple poles,” J. Appl. Phys. 73, 1897–1903 (1993).
[CrossRef]

Liz-Marzan, L. M.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Lu, W.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Milton, G. W.

G. W. Milton, “Bounds on the effective permittivity of a two-component composite material,” J. Appl. Phys. 52, 5286–5293 (1981).
[CrossRef]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Mulvaney, P.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Novo, C.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Patra, A.

A. Patra, V. D. Das, and S. Kasiviswanathan, “Optical and photoluminescence studies of gold nanoparticles embedded ZnO thin films,” Thin Solid Films 518, 1399–1401 (2009).
[CrossRef]

Paul, A.

A. Paul and H. N. Acharya, “Equilibrium thermodynamics of nonstoichiometry in ZnO and aluminum doping of ZnO using aluminum chloride,” J. Mater. Sci. 27, 1716–1722 (1992).
[CrossRef]

Piredda, G.

Pustovit, A. N.

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Qi, W. H.

W. H. Qi and M. P. Wang, “Size and shape dependent lattice parameters of metallic nanoparticles,” J. Nanopart. Res. 7, 51–57 (2005).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Rodriguez-Fernandez, J.

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Ross, D.

D. Ross and R. Aroca, “Effective medium theories in surface enhanced infrared spectroscopy: the pentacene example,” J. Chem. Phys. 117, 8095–8103 (2002).
[CrossRef]

Sancho-Parramon, J.

Sarychev, A. K.

V. M. Shalaev and A. K. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[CrossRef]

Schmitt, J.

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev and A. K. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[CrossRef]

Shashidhar, R.

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

Shen, L. C.

C. Liu and L. C. Shen, “Dielectric constant of two component, two-dimensional mixtures in terms of Bergman-Milton simple poles,” J. Appl. Phys. 73, 1897–1903 (1993).
[CrossRef]

Sheng, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

Smith, D. D.

Smith, P.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

Sturm, J.

E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, and X. Zang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Theiss, W.

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994).
[CrossRef]

Volkov, V. T.

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

von Plessen, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Wang, M. P.

W. H. Qi and M. P. Wang, “Size and shape dependent lattice parameters of metallic nanoparticles,” J. Nanopart. Res. 7, 51–57 (2005).
[CrossRef]

Wei, Q. H.

K. H. Su, Q. H. Wei, and X. Zang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

Wen, W.

Wendling, B.

Wong, G. K. L.

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22, 1923–1926 (2005).
[CrossRef]

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

Wu, H.

C. Liu and H. Wu, “Computation of the effective dielectric constant of two-component, three-dimensional mixtures using a simple pole expansion method,” J. Appl. Phys. 82, 345–350 (1997).
[CrossRef]

Xiao, R. F.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

Yu, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

Yu, S.

Zang, X.

K. H. Su, Q. H. Wei, and X. Zang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

Zaporojtchenko, V.

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Zorc, H.

Adv. Mater. (6)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997).
[CrossRef]

M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

K. H. Su, Q. H. Wei, and X. Zang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

B. Houng, “Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique,” Appl. Phys. Lett. 87, 251922 (2005).
[CrossRef]

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997).
[CrossRef]

Bull. Lebedev Phys. Inst. (1)

A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007).
[CrossRef]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

J. Appl. Phys. (3)

G. W. Milton, “Bounds on the effective permittivity of a two-component composite material,” J. Appl. Phys. 52, 5286–5293 (1981).
[CrossRef]

C. Liu and L. C. Shen, “Dielectric constant of two component, two-dimensional mixtures in terms of Bergman-Milton simple poles,” J. Appl. Phys. 73, 1897–1903 (1993).
[CrossRef]

C. Liu and H. Wu, “Computation of the effective dielectric constant of two-component, three-dimensional mixtures using a simple pole expansion method,” J. Appl. Phys. 82, 345–350 (1997).
[CrossRef]

J. Chem. Phys. (1)

D. Ross and R. Aroca, “Effective medium theories in surface enhanced infrared spectroscopy: the pentacene example,” J. Chem. Phys. 117, 8095–8103 (2002).
[CrossRef]

J. Mater. Sci. (1)

A. Paul and H. N. Acharya, “Equilibrium thermodynamics of nonstoichiometry in ZnO and aluminum doping of ZnO using aluminum chloride,” J. Mater. Sci. 27, 1716–1722 (1992).
[CrossRef]

J. Nanopart. Res. (1)

W. H. Qi and M. P. Wang, “Size and shape dependent lattice parameters of metallic nanoparticles,” J. Nanopart. Res. 7, 51–57 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Soc. Jpn. (1)

H. Iwasaki, “Study on the ordered phases with long period in the gold-zinc alloy system, II. structure of Au3Zn[R1], Au3Zn[R2] and Au3+Zn,” J. Phys. Soc. Jpn. 17, 1620–1633 (1962).
[CrossRef]

Nature Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43, 377–407 (1978).
[CrossRef]

Phys. Rev. B (3)

D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19, 2359–2368 (1979).
[CrossRef]

V. M. Shalaev and A. K. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi A (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008).
[CrossRef]

Surf. Sci. Rep. (1)

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

Thin Solid Films (1)

A. Patra, V. D. Das, and S. Kasiviswanathan, “Optical and photoluminescence studies of gold nanoparticles embedded ZnO thin films,” Thin Solid Films 518, 1399–1401 (2009).
[CrossRef]

Z. Phys. B: Condens. Matter (1)

E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994).
[CrossRef]

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SEM images of (a) ZnO/Si, (b) Au/ZnO/Si, (c) AuNPs/ZnO/Si, and (d) ZnO/AuNPZnO/ZnO/Si structures.

Fig. 2.
Fig. 2.

Optical transmittance of the ZnO/GP (inverted triangles), Auair/ZnO/GP (circles), AuNPair/ZnO/GP (triangles), and ZnO/AuNPZnOZnO/ZnO/GP (squares) structures. Continuous curves represent fits to the data. The inset shows the spectral density function of the Au–air (dark curve), AuNP–air (dark grey curve), and AuNP–ZnO (light grey curve) composites.

Fig. 3.
Fig. 3.

Effective dielectric function of (a) Au–air, (b) AuNP–air, and (c) AuNP–ZnO composite media. Dark lines denote εeff1, and grey lines denote εeff2.

Fig. 4.
Fig. 4.

SEM images of AuNPs/ZnO/Si structures formed with an initial Au film mass thickness of (a) 8 and (b) 10 nm.

Fig. 5.
Fig. 5.

Transmittance spectrum of ZnO/AuNPZnO/ZnO/GP structure formed with an initial Au film thickness of 5 (triangles), 8 (circles), and 10 nm (squares). The continuous curves through the data points denote the fit. The inset shows the spectral density function of AuNP–ZnO composite film formed with an initial Au film thickness of 5 nm (dark curve), 8 nm (dark grey curve), and 10 nm (light grey curve).

Fig. 6.
Fig. 6.

SEM image of the AuNPs/ZnO/AuNPZnO/ZnO/Si structure. The thickness of the two Au films used for forming AuNPs is the same and is 5nm.

Fig. 7.
Fig. 7.

Transmittance spectrum of structure-1 (triangles) and structure-2 (circles). The inset shows the spectral density function of AuNP–ZnO composite film in structure-1 (grey curve) and structure-2 (dark curve).

Fig. 8.
Fig. 8.

(a) εeff1 for AuNP–ZnO composite film in structure-1 (grey curve) and structure-2 (dark curve). (b) εeff2 for AuNP–ZnO composite film in structure-1 (grey curve) and structure-2 (dark curve).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

εeffε1=1n=1NAmsm,
s(1ε2ε1)1.
εeffε1=1f01g(m)smdm,

Metrics