Abstract

We report measurements of ultrahigh quality factors (Q-factors) of the optical whispering-gallery modes excited via a tapered optical-fiber waveguide in single glycerol–water microdroplets standing on a superhydrophobic surface in air. Owing to the high contact angle of the glycerol–water mixture on the superhydrophobic surface (>155°), microdroplets with the geometry of a truncated sphere minimally distorted by gravity and contact line pinning effects could be generated. Q-factors up to 2.3×106 were observed for such droplets with radii of 100200μm exposed to the ambient atmosphere in a closed chamber with controlled relative humidity. Placement of microdroplets in a constant humidity environment permitted prolonged characterization of Q-factors for individual microdroplets. We found that the Q-factors in air were stable over more than 1 h and their measured values were limited mostly by the thermally induced droplet shape fluctuations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
    [CrossRef]
  3. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [CrossRef]
  4. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [CrossRef]
  5. G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).
  6. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef]
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [CrossRef]
  8. V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 84, 1308–1316 (2001).
  9. J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
    [CrossRef]
  10. P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
    [CrossRef]
  11. J. D. Eversole, H.-B. Lin, and A. J. Campillo, “Cavity-mode identification of fluorescence and lasing in dye-doped microdroplets,” Appl. Opt. 31, 1982–1991 (1992).
    [CrossRef]
  12. J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, S. Y. Liu, and K. Young, “High-precision identification of morphology-dependent resonances in optical processes in microdroplets,” J. Opt. Soc. Am. B 10, 1955–1968 (1993).
    [CrossRef]
  13. S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
    [CrossRef]
  14. H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
    [CrossRef]
  15. H. B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992).
    [CrossRef]
  16. A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
    [CrossRef]
  17. M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32, 2529–2531 (2007).
    [CrossRef]
  18. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
    [CrossRef]
  19. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [CrossRef]
  20. H. B. Lin, J. D. Eversole, and A. J. Campillo, “Continuous-wave stimulated Raman scattering in microdroplets,” Opt. Lett. 17, 828–830 (1992).
    [CrossRef]
  21. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
    [CrossRef]
  22. R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
    [CrossRef]
  23. A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
    [CrossRef]
  24. Y. Karadag, M. Gündoğan, M. Y. Yüce, H. Cankaya, A. Sennaroglu, and A. Kiraz, “Prolonged Raman lasing in size-stabilized salt-water microdroplets on a superhydrophobic surface,” Opt. Lett. 35, 1995–1997 (2010).
    [CrossRef]
  25. A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
    [CrossRef]
  26. J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
    [CrossRef]
  27. S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989).
    [CrossRef]
  28. P. T. Leung and K. Young, “Theory of enhanced energy transfer in an aerosol particle,” J. Chem. Phys. 89, 2894–2899 (1988).
    [CrossRef]
  29. A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
    [CrossRef]
  30. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [CrossRef]
  31. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef]
  32. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, 10800–10810 (2006).
    [CrossRef]
  33. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  34. F. Orucevic, V. Lefevre-Seguin, and J. Hare, “Transmittance and near-field characterization of sub-wavelength tapered optical fibers,” Opt. Express 15, 13624–13626 (2007).
    [CrossRef]
  35. A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
    [CrossRef]
  36. A. Kiraz, Y. Karadağ, and M. Muradoğlu, “Large spectral tuning of a water/glycerol microdroplet by a focused laser: characterization and modeling,” Phys. Chem. Chem. Phys. 10, 6446–6454 (2008).
    [CrossRef]
  37. D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2012 (CRC, 2012). http://www.hbcpnetbase.com
  38. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  39. P. Chylek, “Partial-wave resonances and the ripple structure in the Mie normalized exctinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
    [CrossRef]
  40. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
    [CrossRef]
  41. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
    [CrossRef]
  42. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
    [CrossRef]
  43. V. A. Lubarda and K. A. Talke, “Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model,” Langmuir 27, 10705–10713 (2011).
    [CrossRef]
  44. S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
    [CrossRef]
  45. H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effect of perturbations on the widths of narrow morphology–dependent resonance in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991).
    [CrossRef]
  46. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 um wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef]
  47. L. F. Phillips, “A geometrical explanation for the enhanced small–scale roughness of a liquid surface,” J. Phys. Chem. B 108, 1986–1991 (2004).
    [CrossRef]
  48. H. M. Lai, P. T. Leung, and K. Young, “Limitations on the photon storage lifetime in electromagnetic resonances of highly transparent microdroplets,” Phys. Rev. A 41, 5199–5204(1990).
    [CrossRef]

2011

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
[CrossRef]

V. A. Lubarda and K. A. Talke, “Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model,” Langmuir 27, 10705–10713 (2011).
[CrossRef]

2010

2009

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
[CrossRef]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

2008

A. Kiraz, Y. Karadağ, and M. Muradoğlu, “Large spectral tuning of a water/glycerol microdroplet by a focused laser: characterization and modeling,” Phys. Chem. Chem. Phys. 10, 6446–6454 (2008).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
[CrossRef]

2007

2006

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, 10800–10810 (2006).
[CrossRef]

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[CrossRef]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

2004

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[CrossRef]

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

L. F. Phillips, “A geometrical explanation for the enhanced small–scale roughness of a liquid surface,” J. Phys. Chem. B 108, 1986–1991 (2004).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

2001

V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 84, 1308–1316 (2001).

2000

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

1997

1996

1993

1992

1991

1990

H. M. Lai, P. T. Leung, and K. Young, “Limitations on the photon storage lifetime in electromagnetic resonances of highly transparent microdroplets,” Phys. Rev. A 41, 5199–5204(1990).
[CrossRef]

P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[CrossRef]

1989

1988

1986

H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
[CrossRef]

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

1985

1976

1973

Abate, A. R.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Acker, W. P.

Agresti, J. J.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Arnold, S.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989).
[CrossRef]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[CrossRef]

Birks, T. A.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Campillo, A. J.

Cankaya, H.

Chang, R. K.

Chemla, Y. R.

Chen, G.

Cheung, G.

Chylek, P.

Conti, G. N.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Datsyuk, V. V.

V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 84, 1308–1316 (2001).

Demirel, A. L.

A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[CrossRef]

A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
[CrossRef]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Doganay, S.

A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
[CrossRef]

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Dundar, M. A.

A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
[CrossRef]

Dündar, M. A.

Eversole, J. D.

Feron, P.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Folan, L. M.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Gorodetsky, M. L.

Gündogan, M.

Hale, G. M.

Hare, J.

Hill, S. C.

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[CrossRef]

Hopkins, R. J.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[CrossRef]

Hossein-Zadeh, M.

Huston, A. L.

Ilchenko, V. S.

Jacques, F.

Jonas, A.

A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
[CrossRef]

Justus, B. L.

Kalaycioglu, H.

A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
[CrossRef]

Karadag, Y.

A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
[CrossRef]

Y. Karadag, M. Gündoğan, M. Y. Yüce, H. Cankaya, A. Sennaroglu, and A. Kiraz, “Prolonged Raman lasing in size-stabilized salt-water microdroplets on a superhydrophobic surface,” Opt. Lett. 35, 1995–1997 (2010).
[CrossRef]

A. Kiraz, Y. Karadağ, and M. Muradoğlu, “Large spectral tuning of a water/glycerol microdroplet by a focused laser: characterization and modeling,” Phys. Chem. Chem. Phys. 10, 6446–6454 (2008).
[CrossRef]

Keng, D.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
[CrossRef]

Kennedy, I. M.

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Kiraz, A.

A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
[CrossRef]

Y. Karadag, M. Gündoğan, M. Y. Yüce, H. Cankaya, A. Sennaroglu, and A. Kiraz, “Prolonged Raman lasing in size-stabilized salt-water microdroplets on a superhydrophobic surface,” Opt. Lett. 35, 1995–1997 (2010).
[CrossRef]

A. Kiraz, Y. Karadağ, and M. Muradoğlu, “Large spectral tuning of a water/glycerol microdroplet by a focused laser: characterization and modeling,” Phys. Chem. Chem. Phys. 10, 6446–6454 (2008).
[CrossRef]

A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[CrossRef]

A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
[CrossRef]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Knight, J. C.

Kolchenko, V.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
[CrossRef]

Kucukkara, I.

A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Kurt, A.

A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
[CrossRef]

A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[CrossRef]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Lai, H. M.

H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effect of perturbations on the widths of narrow morphology–dependent resonance in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Limitations on the photon storage lifetime in electromagnetic resonances of highly transparent microdroplets,” Phys. Rev. A 41, 5199–5204(1990).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[CrossRef]

Lam, C. C.

Leach, D. H.

Lefevre-Seguin, V.

Leung, P. T.

J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, S. Y. Liu, and K. Young, “High-precision identification of morphology-dependent resonances in optical processes in microdroplets,” J. Opt. Soc. Am. B 10, 1955–1968 (1993).
[CrossRef]

H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effect of perturbations on the widths of narrow morphology–dependent resonance in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Limitations on the photon storage lifetime in electromagnetic resonances of highly transparent microdroplets,” Phys. Rev. A 41, 5199–5204(1990).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[CrossRef]

P. T. Leung and K. Young, “Theory of enhanced energy transfer in an aerosol particle,” J. Chem. Phys. 89, 2894–2899 (1988).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Li, Z.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2012 (CRC, 2012). http://www.hbcpnetbase.com

Lin, H. B.

Lin, H.-B.

Liu, S. Y.

Lubarda, V. A.

V. A. Lubarda and K. A. Talke, “Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model,” Langmuir 27, 10705–10713 (2011).
[CrossRef]

Mazumder, M. M.

Mitchem, L.

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[CrossRef]

Muradoglu, M.

A. Kiraz, Y. Karadağ, and M. Muradoğlu, “Large spectral tuning of a water/glycerol microdroplet by a focused laser: characterization and modeling,” Phys. Chem. Chem. Phys. 10, 6446–6454 (2008).
[CrossRef]

Orucevic, F.

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Perron, R.

Phillips, L. F.

L. F. Phillips, “A geometrical explanation for the enhanced small–scale roughness of a liquid surface,” J. Phys. Chem. B 108, 1986–1991 (2004).
[CrossRef]

Psaltis, D.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Qian, S.-X.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[CrossRef]

Querry, M. R.

Ramjit, R.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
[CrossRef]

Reid, J. P.

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[CrossRef]

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[CrossRef]

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Ristic, D.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Savchenkov, A. A.

Sayer, R. M.

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

Sennaroglu, A.

Serpengüzel, A.

Snow, J. B.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[CrossRef]

Soria, S.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Swindal, J. C.

Symes, R.

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

Talke, K. A.

V. A. Lubarda and K. A. Talke, “Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model,” Langmuir 27, 10705–10713 (2011).
[CrossRef]

Tang, S. K. Y.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Tanyeri, M.

Tasaltin, N.

A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
[CrossRef]

Teraoka, I.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
[CrossRef]

Tzeng, H. M.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, 10800–10810 (2006).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

Ward, A. D.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[CrossRef]

Waters, J. C.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
[CrossRef]

Weitz, D. A.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Whitesides, G. M.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Young, K.

J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, S. Y. Liu, and K. Young, “High-precision identification of morphology-dependent resonances in optical processes in microdroplets,” J. Opt. Soc. Am. B 10, 1955–1968 (1993).
[CrossRef]

H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effect of perturbations on the widths of narrow morphology–dependent resonance in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991).
[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Limitations on the photon storage lifetime in electromagnetic resonances of highly transparent microdroplets,” Phys. Rev. A 41, 5199–5204(1990).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[CrossRef]

P. T. Leung and K. Young, “Theory of enhanced energy transfer in an aerosol particle,” J. Chem. Phys. 89, 2894–2899 (1988).
[CrossRef]

Yüce, M. Y.

Zhang, J.-Z.

Annu. Rev. Phys. Chem.

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Faraday Disc. Chem. Soc.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008).
[CrossRef]

J. Cell Biol.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
[CrossRef]

J. Chem. Phys.

P. T. Leung and K. Young, “Theory of enhanced energy transfer in an aerosol particle,” J. Chem. Phys. 89, 2894–2899 (1988).
[CrossRef]

J. Lightwave Technol.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

J. Mol. Liq.

V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 84, 1308–1316 (2001).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. B

L. F. Phillips, “A geometrical explanation for the enhanced small–scale roughness of a liquid surface,” J. Phys. Chem. B 108, 1986–1991 (2004).
[CrossRef]

Lab Chip

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[CrossRef]

Langmuir

A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011).
[CrossRef]

V. A. Lubarda and K. A. Talke, “Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model,” Langmuir 27, 10705–10713 (2011).
[CrossRef]

Nat. Methods

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

Opt. Commun.

A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Y. Karadag, M. Gündoğan, M. Y. Yüce, H. Cankaya, A. Sennaroglu, and A. Kiraz, “Prolonged Raman lasing in size-stabilized salt-water microdroplets on a superhydrophobic surface,” Opt. Lett. 35, 1995–1997 (2010).
[CrossRef]

A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[CrossRef]

M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32, 2529–2531 (2007).
[CrossRef]

G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
[CrossRef]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[CrossRef]

H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
[CrossRef]

J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef]

S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989).
[CrossRef]

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Continuous-wave stimulated Raman scattering in microdroplets,” Opt. Lett. 17, 828–830 (1992).
[CrossRef]

Phys. Chem. Chem. Phys.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[CrossRef]

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

A. Kiraz, Y. Karadağ, and M. Muradoğlu, “Large spectral tuning of a water/glycerol microdroplet by a focused laser: characterization and modeling,” Phys. Chem. Chem. Phys. 10, 6446–6454 (2008).
[CrossRef]

Phys. Rev. A

H. M. Lai, P. T. Leung, and K. Young, “Limitations on the photon storage lifetime in electromagnetic resonances of highly transparent microdroplets,” Phys. Rev. A 41, 5199–5204(1990).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[CrossRef]

Phys. Rev. Lett.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Rivista Nuovo Cimento

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Other

D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2012 (CRC, 2012). http://www.hbcpnetbase.com

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup for ultrahigh- Q spectroscopy of surface-supported liquid microdroplets. PD1 (PD2), photodetector monitoring the light power at the input (output) of the tapered fiber. (b) Image of a surface-supported glycerol–water microdroplet with a tapered fiber positioned in its equatorial plane (view along the z -axis).

Fig. 2.
Fig. 2.

Images of a glycerol–water microdroplet standing on a superhydrophobic surface (side view along the surface plane). Images were acquired at different times t elapsed since the droplet generation.

Fig. 3.
Fig. 3.

Low-resolution transmission spectrum of a tapered fiber waveguide coupled to a glycerol–water droplet in air as a function of the pump laser wavelength. Spectrum acquisition time was 100 s . FSR indicates the free spectral range of the microdroplet cavity ( FSR = 0.414 nm ).

Fig. 4.
Fig. 4.

High-resolution transmission spectrum of a tapered fiber waveguide coupled to a glycerol–water droplet in air as a function of the pump laser wavelength and time. (a) Time series of transmission scans over the whole fine-tuning range of the laser (spectral interval width 125 pm ). (b) Time series of transmission scans over the tuning range occupied by a group of WGMs shown in the left part of spectral map (a) (spectral interval width 54 pm ). (c) Spectral profile of the tapered fiber transmission along the dashed white line shown in spectral map (b). Black cross denotes a representative WGM used for the Q -factor analysis (see graph inset and text). Average droplet radius was 130 μm and rate of the droplet radius change was 0.17 nm / s .

Fig. 5.
Fig. 5.

Time evolution of the Q -factor of degeneracy-lifted azimuthal WGMs of a surface-supported microdroplet. Time t = 0 s corresponds to the droplet deposition on the surface. Crosses represent experimental data, line is the linear fit of this data. Average droplet radius was 150 μm.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Q = ω δ ω = λ δ λ ,
a = λ 2 2 π FSR arctan ( [ n D 2 1 ] 1 / 2 ) ( [ n D 2 1 ] 1 / 2 )
Δ λ = ( λ a ) Δ a .
ω ( m ) = ω 0 ( 1 e 6 [ 1 3 m 2 l ( l + 1 ) ] ) .
Δ ω ( m ) = ω ( m + 1 ) ω ( m ) = ω 0 e l ( l + 1 ) [ m + 1 2 ] .
l 2 π a n s λ 1852 1 .
Δ ω ( m ) ω 0 e l 2 [ m + 1 2 ] ω 0 e l ,
e Δ ω ( m ) ω 0 2 π a n s λ = 2 π a n s Δ λ λ 2 ,
1 Q = 1 Q rad + 1 Q mat + 1 Q s . s . ,
Q mat = 2 π n s α λ ,
Q s . s . = λ 2 a π 2 Δ 2 B ,
Δ = [ k B T 4 π γ ] 1 / 2 ,
d ω ( m ) = ω 0 6 [ 1 3 m 2 l ( l + 1 ) ] d e .
δ e = [ 1 + 1 2 ( a r p ) 3 / 2 ] Δ a .
δ e 3 2 Δ a .
d ω ( m ) ω 0 = 1 6 [ 1 3 m 2 l ( l + 1 ) ] 3 2 Δ a .
d ω ( m ) ω 0 = 1 2 Δ a .
Q eff = ω 0 d ω ( m ) = 2 a Δ 3.7 × 10 6 .

Metrics