Abstract

This work presents a detailed theoretical description of using virtual reference interferometry (VRI) for the measurement of chromatic dispersion in short fibers and components. Special consideration is given to the unique ability to reduce the bandwidth required for a measurement, to measure components in cascade, and to measure both narrowband and ultrashort devices. Measurement parameters for VRI-based systems are developed to provide an understanding of the constraints and limitations of the technique. Experimental validation of theory is then provided.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
    [CrossRef]
  3. M. Saleh and C. Teich, Fundamentals of Photonics (John Wiley and Sons, 2001).
  4. Liu Jia-Ming, Photonic Devices (Cambridge University, 2005).
  5. K. C. Chan and H. F. Liu, “Effect of third order dispersion on soliton-effect pulse compression,” Opt. Lett. 19, 49–51 (1994).
    [CrossRef]
  6. T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-harmonic generation in thermally poled twin-hole fiber using nanosecond and femtosecond laser pulses,” in Proceedings of IEEE LEOS Annual Meeting, 27–28 October (IEEE, 2003), pp. 413–414.
  7. T. Mizunami and T. Tsukada, “Quasi phase-matched second-harmonic generation in thermally poled twin-hole fiber by periodic UV depoling,” in Proceedings of 30th European Conference on Optical Communication, pt. 2, 5–9 September (IEEE, 2004), pp. 240–241.
  8. T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004).
    [CrossRef]
  9. J. H. Wiesenfeld and J. Stone, “Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers,” J. Lightwave Technol. 2, 464 (1984).
    [CrossRef]
  10. J. Brendel, H. Zbinden, and N. Gisin, “Measurement of chromatic dispersion in optical fibers using pairs of correlated photons,” Opt. Commun. 151, 35–39 (1998).
    [CrossRef]
  11. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982).
    [CrossRef]
  12. L. Cherbi, M. Mehenni, and R. Aksas, “Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool,” Microw. Opt. Technol. Lett. 48, 174–178 (2006).
    [CrossRef]
  13. Agilent Technologies, “Agilent 86038B photonic dispersion and loss analyzer,” http://cp.literature.agilent.com/litweb/pdf/5989-2325EN.pdf .
  14. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
    [CrossRef]
  15. T. Matsui, K. Nakajima, and I. Sankawa, “Dispersion compensation over all the telecommunication bands with double-cladding photonic crystal fiber,” J. Lightwave Technol. 25, 757–762 (2007).
    [CrossRef]
  16. D. Liu, W. Tong, S. Liu, and H. Liu, “Study on the fabrication techniques of photonic crystal fiber and PCF based structures,” Proc. SPIE 5722, 123–129 (2005).
    [CrossRef]
  17. D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.
  18. P. Merrit, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
    [CrossRef]
  19. R. Cella and W. Wood, “Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry,” in Proceedings of the Sixth Optical Fiber Measurement Conference, 27 November (OFMC, 2001), pp. 207–210.
  20. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
    [CrossRef]
  21. J. Gehler and W. Spahn, “Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy,” Electron. Lett. 36, 338–340 (2000).
    [CrossRef]
  22. R. K. Hickernell, T. Kazumasa, M. Yamada, M. Shimizu, and M. Horiguchi, “Pump-induced dispersion of erbium-doped fiber measured by Fourier-transform spectroscopy,” Opt. Lett. 18, 19–21 (1993).
    [CrossRef]
  23. C. Palavicini, Y. Jaouën, G. Debarge, E. Kerrinckx, Y. Quiquempois, M. Douay, C. Lepers, A.-F. Obaton, and G. Melin, “Phase-sensitive optical low-coherence reflectometry technique applied to the characterization of photonic crystal fiber properties,” Opt. Lett. 30, 361–363 (2005).
    [CrossRef]
  24. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
    [CrossRef]
  25. M. A. Galle, W. Mohammed, L. Qian, and P. W. E. Smith, “Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber,” Opt. Express 15, 16896–16908 (2007).
    [CrossRef]
  26. M. A. Galle, Single-arm Three Wave Interferometer for Measuring Dispersion in Short Lengths of Fiber (University of Toronto, 2007).
  27. P. Hlubina, “White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical core optical fibers,” Opt. Commun. 218, 283–289 (2003).
    [CrossRef]
  28. P. Hlubina, T. Martynkien, and W. Urbanczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express 11, 2793–2798 (2003).
  29. J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
    [CrossRef]
  30. C. D. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling in Fourier transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [CrossRef]
  31. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
    [CrossRef]
  32. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15, 11073–11081 (2007).
    [CrossRef]
  33. W. Mohammed, J. Meier, M. A. Galle, L. Qian, J. S. Aitchison, and P. W. E. Smith, “Linear and quadratic dispersion characterization of millimetre-length fibers and waveguides using common-path interferometry,” Opt. Lett. 32, 3312–3314(2007).
    [CrossRef]
  34. M. A. Galle, S. S. Saini, W. Mohammed, and L. Qian, “Chromatic dispersion measurements using virtually referenced interferometer,” Opt. Lett. 37, 1598–1600 (2012).
    [CrossRef]
  35. S. Vergnole, L. Delage, and F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ‘OHANA project,” Opt. Commun. 232, 31–43 (2004).
    [CrossRef]

2012

2007

2006

L. Cherbi, M. Mehenni, and R. Aksas, “Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool,” Microw. Opt. Technol. Lett. 48, 174–178 (2006).
[CrossRef]

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
[CrossRef]

2005

2004

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004).
[CrossRef]

S. Vergnole, L. Delage, and F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ‘OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

2003

2002

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

2000

C. D. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling in Fourier transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
[CrossRef]

J. Gehler and W. Spahn, “Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy,” Electron. Lett. 36, 338–340 (2000).
[CrossRef]

1999

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
[CrossRef]

1998

J. Brendel, H. Zbinden, and N. Gisin, “Measurement of chromatic dispersion in optical fibers using pairs of correlated photons,” Opt. Commun. 151, 35–39 (1998).
[CrossRef]

1994

1993

1989

P. Merrit, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

1985

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

1984

J. H. Wiesenfeld and J. Stone, “Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers,” J. Lightwave Technol. 2, 464 (1984).
[CrossRef]

1982

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982).
[CrossRef]

1980

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).

Aitchison, J. S.

Aksas, R.

L. Cherbi, M. Mehenni, and R. Aksas, “Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool,” Microw. Opt. Technol. Lett. 48, 174–178 (2006).
[CrossRef]

Amezcua, R.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Asimakis, S.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Baggett, J. C.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Belabas, N.

Brendel, J.

J. Brendel, H. Zbinden, and N. Gisin, “Measurement of chromatic dispersion in optical fibers using pairs of correlated photons,” Opt. Commun. 151, 35–39 (1998).
[CrossRef]

Broderick, N. G. R.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Cella, R.

R. Cella and W. Wood, “Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry,” in Proceedings of the Sixth Optical Fiber Measurement Conference, 27 November (OFMC, 2001), pp. 207–210.

Chan, K. C.

Chemals, D. S.

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
[CrossRef]

Cherbi, L.

L. Cherbi, M. Mehenni, and R. Aksas, “Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool,” Microw. Opt. Technol. Lett. 48, 174–178 (2006).
[CrossRef]

Ciprian, D.

Cohen, L. G.

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982).
[CrossRef]

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Debarge, G.

Delage, L.

S. Vergnole, L. Delage, and F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ‘OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

Dorrer, C. D.

Douay, M.

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Ebendorff, H.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Feng, X.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Finazzi, V.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Frampton, K. E.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Galle, M. A.

Gehler, J.

J. Gehler and W. Spahn, “Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy,” Electron. Lett. 36, 338–340 (2000).
[CrossRef]

Gisin, N.

J. Brendel, H. Zbinden, and N. Gisin, “Measurement of chromatic dispersion in optical fibers using pairs of correlated photons,” Opt. Commun. 151, 35–39 (1998).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Hasch, T.

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
[CrossRef]

Hayes, J. R.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Heidepreim, H.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Hickernell, R. K.

Hlubina, P.

Horiguchi, M.

Horimoto, K.

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004).
[CrossRef]

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-harmonic generation in thermally poled twin-hole fiber using nanosecond and femtosecond laser pulses,” in Proceedings of IEEE LEOS Annual Meeting, 27–28 October (IEEE, 2003), pp. 413–414.

Izatt, J. A.

Jackson, D. A.

P. Merrit, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

Jaouën, Y.

Jia-Ming, Liu

Liu Jia-Ming, Photonic Devices (Cambridge University, 2005).

Joffre, M.

Kazumasa, T.

Kerrinckx, E.

Kim, D. Y.

Lee, J. Y.

Leong, J. Y. Y.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Lepers, C.

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Likforman, J. P.

Liu, D.

D. Liu, W. Tong, S. Liu, and H. Liu, “Study on the fabrication techniques of photonic crystal fiber and PCF based structures,” Proc. SPIE 5722, 123–129 (2005).
[CrossRef]

Liu, H.

D. Liu, W. Tong, S. Liu, and H. Liu, “Study on the fabrication techniques of photonic crystal fiber and PCF based structures,” Proc. SPIE 5722, 123–129 (2005).
[CrossRef]

Liu, H. F.

Liu, S.

D. Liu, W. Tong, S. Liu, and H. Liu, “Study on the fabrication techniques of photonic crystal fiber and PCF based structures,” Proc. SPIE 5722, 123–129 (2005).
[CrossRef]

Marquezini, M. V.

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
[CrossRef]

Martynkien, T.

Matsui, T.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982).
[CrossRef]

Mehenni, M.

L. Cherbi, M. Mehenni, and R. Aksas, “Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool,” Microw. Opt. Technol. Lett. 48, 174–178 (2006).
[CrossRef]

Meier, J.

Melin, G.

Merrit, P.

P. Merrit, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

Mizunami, T.

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004).
[CrossRef]

T. Mizunami and T. Tsukada, “Quasi phase-matched second-harmonic generation in thermally poled twin-hole fiber by periodic UV depoling,” in Proceedings of 30th European Conference on Optical Communication, pt. 2, 5–9 September (IEEE, 2004), pp. 240–241.

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-harmonic generation in thermally poled twin-hole fiber using nanosecond and femtosecond laser pulses,” in Proceedings of IEEE LEOS Annual Meeting, 27–28 October (IEEE, 2003), pp. 413–414.

Mohammed, W.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Monro, T. M.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Moore, R. C.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Nakajima, K.

Noi, Y.

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004).
[CrossRef]

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-harmonic generation in thermally poled twin-hole fiber using nanosecond and femtosecond laser pulses,” in Proceedings of IEEE LEOS Annual Meeting, 27–28 October (IEEE, 2003), pp. 413–414.

Obaton, A.-F.

Palavicini, C.

Petropoulos, P.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Petrovich, M. N.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Poletti, F.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Price, J. H. V.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982).
[CrossRef]

Qian, L.

Quiquempois, Y.

Reynaud, F.

S. Vergnole, L. Delage, and F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ‘OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

Richardson, D. J.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Saini, S. S.

Saleh, M.

M. Saleh and C. Teich, Fundamentals of Photonics (John Wiley and Sons, 2001).

Sankawa, I.

Shimizu, M.

Smith, P. W. E.

Spahn, W.

J. Gehler and W. Spahn, “Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy,” Electron. Lett. 36, 338–340 (2000).
[CrossRef]

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Stone, J.

J. H. Wiesenfeld and J. Stone, “Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers,” J. Lightwave Technol. 2, 464 (1984).
[CrossRef]

Szpulak, M.

Tatam, R. P.

P. Merrit, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

Teich, C.

M. Saleh and C. Teich, Fundamentals of Photonics (John Wiley and Sons, 2001).

Tignon, J.

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
[CrossRef]

Tong, W.

D. Liu, W. Tong, S. Liu, and H. Liu, “Study on the fabrication techniques of photonic crystal fiber and PCF based structures,” Proc. SPIE 5722, 123–129 (2005).
[CrossRef]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Tse, M. L.

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Tsukada, T.

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004).
[CrossRef]

T. Mizunami and T. Tsukada, “Quasi phase-matched second-harmonic generation in thermally poled twin-hole fiber by periodic UV depoling,” in Proceedings of 30th European Conference on Optical Communication, pt. 2, 5–9 September (IEEE, 2004), pp. 240–241.

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-harmonic generation in thermally poled twin-hole fiber using nanosecond and femtosecond laser pulses,” in Proceedings of IEEE LEOS Annual Meeting, 27–28 October (IEEE, 2003), pp. 413–414.

Urbanczyk, W.

Vergnole, S.

S. Vergnole, L. Delage, and F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ‘OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982).
[CrossRef]

Wax, A.

Wiesenfeld, J. H.

J. H. Wiesenfeld and J. Stone, “Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers,” J. Lightwave Technol. 2, 464 (1984).
[CrossRef]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Wood, W.

R. Cella and W. Wood, “Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry,” in Proceedings of the Sixth Optical Fiber Measurement Conference, 27 November (OFMC, 2001), pp. 207–210.

Yamada, M.

Yang, C.

Zbinden, H.

J. Brendel, H. Zbinden, and N. Gisin, “Measurement of chromatic dispersion in optical fibers using pairs of correlated photons,” Opt. Commun. 151, 35–39 (1998).
[CrossRef]

Appl. Phys. Lett.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Electron. Lett.

J. Gehler and W. Spahn, “Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy,” Electron. Lett. 36, 338–340 (2000).
[CrossRef]

IEEE J. Quantum Electron.

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982).
[CrossRef]

J. Lightwave Technol.

P. Merrit, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

T. Matsui, K. Nakajima, and I. Sankawa, “Dispersion compensation over all the telecommunication bands with double-cladding photonic crystal fiber,” J. Lightwave Technol. 25, 757–762 (2007).
[CrossRef]

J. H. Wiesenfeld and J. Stone, “Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers,” J. Lightwave Technol. 2, 464 (1984).
[CrossRef]

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

L. Cherbi, M. Mehenni, and R. Aksas, “Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool,” Microw. Opt. Technol. Lett. 48, 174–178 (2006).
[CrossRef]

Opt. Commun.

J. Brendel, H. Zbinden, and N. Gisin, “Measurement of chromatic dispersion in optical fibers using pairs of correlated photons,” Opt. Commun. 151, 35–39 (1998).
[CrossRef]

P. Hlubina, “White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical core optical fibers,” Opt. Commun. 218, 283–289 (2003).
[CrossRef]

S. Vergnole, L. Delage, and F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ‘OHANA project,” Opt. Commun. 232, 31–43 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Proc. SPIE

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004).
[CrossRef]

D. Liu, W. Tong, S. Liu, and H. Liu, “Study on the fabrication techniques of photonic crystal fiber and PCF based structures,” Proc. SPIE 5722, 123–129 (2005).
[CrossRef]

Other

D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.

Agilent Technologies, “Agilent 86038B photonic dispersion and loss analyzer,” http://cp.literature.agilent.com/litweb/pdf/5989-2325EN.pdf .

R. Cella and W. Wood, “Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry,” in Proceedings of the Sixth Optical Fiber Measurement Conference, 27 November (OFMC, 2001), pp. 207–210.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).

M. Saleh and C. Teich, Fundamentals of Photonics (John Wiley and Sons, 2001).

Liu Jia-Ming, Photonic Devices (Cambridge University, 2005).

T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-harmonic generation in thermally poled twin-hole fiber using nanosecond and femtosecond laser pulses,” in Proceedings of IEEE LEOS Annual Meeting, 27–28 October (IEEE, 2003), pp. 413–414.

T. Mizunami and T. Tsukada, “Quasi phase-matched second-harmonic generation in thermally poled twin-hole fiber by periodic UV depoling,” in Proceedings of 30th European Conference on Optical Communication, pt. 2, 5–9 September (IEEE, 2004), pp. 240–241.

M. A. Galle, Single-arm Three Wave Interferometer for Measuring Dispersion in Short Lengths of Fiber (University of Toronto, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1.
Fig. 1.

Block diagram showing the sequential steps used to extract second-order dispersion using a virtual reference interferometer.

Fig. 2.
Fig. 2.

Schematic for the generation of a real SI. A ferrule connector/angled physical contact (FC/APC) to ferrule connector/physical contact (FC/PC) connection is used as the first reflection point. A virtual cavity (Lv(1)), with a group delay equal to that in the real cavity (Lr), is shown in gray.

Fig. 3.
Fig. 3.

Second-order interference pattern in VRI. The finer interference fringes are not resolved in this depiction and appear black. Only the envelope (i.e., the amplitude modulation) of the interferogram is of interest.

Fig. 4.
Fig. 4.

(a) Second-order interference pattern produced via virtual referencing of the first harmonic. (b) Second-order interference pattern produced via virtual referencing of the second harmonic, resulting in spectral compression.

Fig. 5.
Fig. 5.

Cascade of N elements with FC/PC-to-FC/APC connections as the reflection points.

Fig. 6.
Fig. 6.

Schematic diagram for the measurement of the dispersion of a, FBG. The virtual free-space path (cavity) with equivalent group delay is shown in gray.

Fig. 7.
Fig. 7.

Sample interference generated by the setup in Fig. 6.

Fig. 8.
Fig. 8.

Virtually referenced (and balanced) interference pattern generated by the setup shown in Fig. 6.

Fig. 9.
Fig. 9.

Schematic diagram for ultralow dispersion measurement made using two independent measurements.

Fig. 10.
Fig. 10.

Virtual referencing of the first harmonic (N=1) of an 11 cm length of SMF28 fiber illustrating the uncompressed case.

Fig. 11.
Fig. 11.

Virtual referencing of the second harmonic (N=2) of an 11 cm length of SMF28 fiber resulting in the compression of the period of the amplitude modulation.

Fig. 12.
Fig. 12.

Comparison of group delay measurements of an 11 cm length of SMF28 fiber both with and without compression.

Fig. 13.
Fig. 13.

Comparison of dispersion×length measurements of an 11 cm length of SMF28 fiber both with and without compression.

Fig. 14.
Fig. 14.

Two-element cascade used in the experiment, where Lr1=46cm, Lr2=31.4cm, and Lr3=Lr1+Lr2.

Fig. 15.
Fig. 15.

Power spectrum generated by the cascade in Fig. 14. Peak 1 corresponds to cavity length Lr2, peak 2 corresponds to Lr1, and peak 3 corresponds to Lr1+Lr2.

Fig. 16.
Fig. 16.

Sample second-order interference patterns from virtual referencing (and balancing) of each of the three cavities in Fig. 14.

Fig. 17.
Fig. 17.

Group delay for each of the three cavities in Fig. 14 where Lr1=46cm (peak 2), Lr2=31.4cm (peak 1), and Lr2=Lr1+Lr2 (peak 3).

Fig. 18.
Fig. 18.

Dispersion×length for the cavities in Fig. 14.

Fig. 19.
Fig. 19.

Group delay measurements of a FBG using VRI agree well with those made using a commercial system based on the MPS technique (SWS-OMNI).

Fig. 20.
Fig. 20.

Direct measurement of the dispersion×length of a FBG using VRI.

Fig. 21.
Fig. 21.

Ultralow group delay measurement made by taking the difference between two VRI measurements as illustrated in Fig. 9.

Fig. 22.
Fig. 22.

Ultralow dispersion×length measurement made by taking the difference between two VRI measurements as illustrated in Fig. 9.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

IReal(λ)=|U0+U1+2UN|2=Uin2l14R(1R22R+1R22Rcos(2βfLr)+1)=Uin2l14R[1(1R)2l=0(Rej2βfLr)lm=0(Re+j2βfLr)m],
IReal(λ)N=1ANRNcos(2NβfLr),
IReal(λ)Uin2l14R(22cos(2βfLr)).
Lv(N)(λ^)=Nλ^22Δλ(λ^),
Ivirtual(N)(λ,λ^)cos(2k0Lv(N)(λ^)),
ISO(λ,λ^)IReal(λ)Ivirtual(N)(λ,λ^)ANRNcos(2N(βfLrk0Lv(1))).
τg(λ0)=Ng(λ0)Lrc=Lv(1)(λ0)c,
φAmp.mod.(λ)=2k0(neffLrLv(1)).
IReal(λ)=Uin2R|1+m=1Nl12me2jk=1mβf(k)Lr(k)|2,
IReal(λ)=Uin2R[(1+(l1)4+(l1)8)+2(l1)2cos(2βf(1)Lr(1))+2(l1)4cos(2(βf(1)Lr(1)+βf(2)Lr(2)))+2(l1)6cos(2βf(2)Lr(2))].
IReal(λ)=Uin2[A(λ)DCAmplitude+B(λ)cos(2βfLr+φG)Frequency],
Ivirtual(1)(λ)=cos(2k0Lv(1)).
ISO(λ)=A(λ)cos(2k0Lv(1))high freq+B(λ)2[cos(φG+2βfLr+2k0Lv(1))high freq]×[cos(φG+2βfLr2k0Lv(1))low freq].
φAmp.mod.=2ko(neffGLG2+neffLrLv(1)),
neffG(λ)=neffG(λ0)+(λλ0)1!dneffGdλ|λ0+(λλ0)22!d2neffGdλ2|λ0+(λλ0)33!d3neffGdλ3|λ0+
neff(λ)neff(λ0)+(λλ0)1!dneffdλ|λ0.
φAmp.mod.(λ)=2ko((Ng(Grating)(λ0)LG2+Ng(fiber)(λ0)Lr)Lv(1))+4π(dneffdλ|λ0Lr+dneffGdλ|λ0LG2)+4πLG2((λλ0)22!λd2neffGdλ2|λ0+(λλ0)33!λd3neffGdλ3|λ0+),
|ΔφAmp.mod.(λ1,λ2)|=|φAmp.mod.(λ2)ΔφAmp.mod.(λ1)|4πLG2([(λ2λ0)22!λ2(λ1λ0)22!λ1]d2neffGdλ2|λ0+[(λ2λ0)33!λ2(λ1λ0)33!λ1]d3neffGdλ3|λ0).
(λ1λ0)λ0(2NcLrD(λ0))1/2,
(λ2λ1)λ0(4NcLrD(λ0))1/2.
Bmin=(2+2)(2NcLrD(λ0))1/2λ0.
Bmeas=BsourceBminBsource(2+2)(2NcLrD(λ0))1/2λ0.
BminBsourceLr(2+2)2λ022NcD(λ0)Bsource2.
Δλ=TM=λ22MNgLf,
Lf=λ22MNgΔλ.

Metrics