Abstract

A scenario for realizing simultaneously negative permittivity and permeability of a two-photon quantum-coherent atomic vapor is suggested in order to achieve a left-handed atomic medium with a negative refractive index. One of the remarkable features of the present scheme is that it can lead to a controllable manipulation of the negative refractive index of the atomic vapor. Since the electric- and magnetic-dipole allowed transitions of atoms can be excited by visible and infrared lightwaves, the refractive index of the atomic vapor can exhibit its negative refractive index at optical and near-optical frequency bands. This may be a new scheme to fabricate a negatively refracting material based on the quantum optical approach. Such a three-dimensionally isotropic negative refractive index at visible and infrared wavelengths induced by the two-photon-resonant quantum coherence would find a potential application in fabrication of superlenses for perfect imaging and subwavelength focusing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  4. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
    [CrossRef]
  5. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef]
  6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [CrossRef]
  7. A. Lakhtakia, “Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums,” Int. J. Electron. Commun. (AEU) 58, 229–231 (2004).
    [CrossRef]
  8. A. Lakhtakia, “Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability,” Opt. Express 11, 716–722 (2003).
    [CrossRef]
  9. L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).
    [CrossRef]
  10. X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002).
    [CrossRef]
  11. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [CrossRef]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
    [CrossRef]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [CrossRef]
  14. C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).
    [CrossRef]
  15. T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).
    [CrossRef]
  16. I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).
    [CrossRef]
  17. D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010).
    [CrossRef]
  18. V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).
  19. M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).
    [CrossRef]
  20. J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).
    [CrossRef]
  21. Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006).
    [CrossRef]
  22. Q. Thommen and P. Mandel, “Left-handed properties of erbium-doped crystals,” Opt. Lett. 31, 1803–1805 (2006).
    [CrossRef]
  23. C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).
    [CrossRef]
  24. D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).
    [CrossRef]
  25. D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).
  26. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2001), Chap. 4, pp. 159–162.
  27. D. M. Cook, The Theory of the Electromagnetic Field (Prentice-Hall, 1975), Chap. 11.
  28. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.
  29. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
    [CrossRef]
  30. A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).
    [CrossRef]
  31. X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).
  32. A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).
    [CrossRef]
  33. J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).
    [CrossRef]
  34. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
    [CrossRef]
  35. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
    [CrossRef]
  36. A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
    [CrossRef]
  37. S. Gasiorowicz, Quantum Physics, 3rd ed. (Wiley, 2003), pp. 193–264.
  38. T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).
    [CrossRef]
  39. J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).
    [CrossRef]
  40. J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).
    [CrossRef]
  41. J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).
    [CrossRef]
  42. J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
    [CrossRef]
  43. J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
    [CrossRef]
  44. P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).
    [CrossRef]
  45. P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).
    [CrossRef]
  46. M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).
    [CrossRef]
  47. J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).
    [CrossRef]
  48. O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).
    [CrossRef]
  49. Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).
    [CrossRef]

2011 (1)

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).
[CrossRef]

2010 (6)

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010).
[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

2009 (3)

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).
[CrossRef]

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).
[CrossRef]

2007 (1)

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).
[CrossRef]

2006 (5)

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).
[CrossRef]

Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006).
[CrossRef]

Q. Thommen and P. Mandel, “Left-handed properties of erbium-doped crystals,” Opt. Lett. 31, 1803–1805 (2006).
[CrossRef]

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

2005 (5)

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).
[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).
[CrossRef]

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).
[CrossRef]

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).
[CrossRef]

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).
[CrossRef]

2004 (6)

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).
[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).
[CrossRef]

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).
[CrossRef]

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).
[CrossRef]

A. Lakhtakia, “Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums,” Int. J. Electron. Commun. (AEU) 58, 229–231 (2004).
[CrossRef]

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

2003 (3)

A. Lakhtakia, “Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability,” Opt. Express 11, 716–722 (2003).
[CrossRef]

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).
[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).
[CrossRef]

2002 (2)

X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002).
[CrossRef]

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).
[CrossRef]

2001 (2)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

1997 (1)

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

1996 (2)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef]

1995 (1)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
[CrossRef]

1985 (1)

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

1961 (1)

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).
[CrossRef]

Ahokas, J.

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).
[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).
[CrossRef]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Arve, P.

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).
[CrossRef]

Belyanin, A.

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).
[CrossRef]

Blumenthal, D. J.

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).
[CrossRef]

Capasso, F.

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).
[CrossRef]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Chan, M. L.

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Chen, L.

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Chirkin, A. S.

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).
[CrossRef]

Cook, D. M.

D. M. Cook, The Theory of the Electromagnetic Field (Prentice-Hall, 1975), Chap. 11.

Corliss, C.

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).
[CrossRef]

Davanço, M.

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).
[CrossRef]

Deutsch, M.

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

Du, D.

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
[CrossRef]

Eghtedari, A.

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).
[CrossRef]

Engström, O.

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).
[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).
[CrossRef]

Fleischhauer, M.

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).
[CrossRef]

Fu, Y.

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).
[CrossRef]

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).
[CrossRef]

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
[CrossRef]

Gao, X. C.

X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002).
[CrossRef]

Gasiorowicz, S.

S. Gasiorowicz, Quantum Physics, 3rd ed. (Wiley, 2003), pp. 193–264.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Guney, D. O.

He, S.

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).
[CrossRef]

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef]

Holmström, P.

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).
[CrossRef]

Horsley, D. A.

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Hu, X. M.

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Imamoglu, A.

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

Islam, M. S.

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Jaakkola, S.

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2001), Chap. 4, pp. 159–162.

Jänes, P.

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).
[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).
[CrossRef]

Järvinen, J.

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).
[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).
[CrossRef]

Kästel, J.

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).
[CrossRef]

Khmelenko, V. V.

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

Klinkenberg, P. F. A.

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).
[CrossRef]

Koschny, T.

D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010).
[CrossRef]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).
[CrossRef]

Krowne, C. M.

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, “Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums,” Int. J. Electron. Commun. (AEU) 58, 229–231 (2004).
[CrossRef]

A. Lakhtakia, “Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability,” Opt. Express 11, 716–722 (2003).
[CrossRef]

Lee, D. M.

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Logeeswaran, V. J.

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Luo, Y.

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).
[CrossRef]

Mandel, P.

Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006).
[CrossRef]

Q. Thommen and P. Mandel, “Left-handed properties of erbium-doped crystals,” Opt. Lett. 31, 1803–1805 (2006).
[CrossRef]

Marcinkevicius, S.

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).
[CrossRef]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
[CrossRef]

Müstecaphoglu, Ö. E.

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).
[CrossRef]

Nikandrov, A. V.

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).
[CrossRef]

Novotny, S.

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

Odit, M.

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).
[CrossRef]

Oktel, M. Ö.

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).
[CrossRef]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

Ruan, Z. C.

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).
[CrossRef]

Schmidt, H.

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

Shen, J. Q.

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).
[CrossRef]

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).
[CrossRef]

Shen, L.

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
[CrossRef]

Siegert, J.

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).
[CrossRef]

Sikes, D. E.

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).
[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).

Simovski, C. R.

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

Soukoulis, C. M.

D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010).
[CrossRef]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).
[CrossRef]

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef]

Sugar, J.

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).
[CrossRef]

Thommen, Q.

Q. Thommen and P. Mandel, “Left-handed properties of erbium-doped crystals,” Opt. Lett. 31, 1803–1805 (2006).
[CrossRef]

Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006).
[CrossRef]

Thylén, L.

P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005).
[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).
[CrossRef]

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).
[CrossRef]

Tidström, J.

Vainio, O.

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

van Kleef, T. A. M.

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).
[CrossRef]

Vasiliev, S.

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).
[CrossRef]

Vasilyev, S.

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).
[CrossRef]

Vendik, I.

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).
[CrossRef]

Vendik, O.

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Walsworth, R. L.

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).
[CrossRef]

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Wang, S.-Y.

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Williams, R. S.

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Wojcik, A.

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).
[CrossRef]

Woods, G.

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

Wu, W.

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Xiao, M.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Yavuz, D. D.

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).
[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).

Yelin, S. F.

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef]

Yu, N.

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).
[CrossRef]

Zhang, L.

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).
[CrossRef]

Zhao, Q. X.

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.

Acta Phys. Sin. (1)

X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).

Appl. Phys. Lett. (1)

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[CrossRef]

Chin. Phys. Lett. (1)

X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Int. J. Electron. Commun. (AEU) (1)

A. Lakhtakia, “Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums,” Int. J. Electron. Commun. (AEU) 58, 229–231 (2004).
[CrossRef]

J. Appl. Phys. (1)

Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).
[CrossRef]

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

J. Quantum Electron. (1)

M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003).
[CrossRef]

J. Russ. Laser Res. (1)

A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002).
[CrossRef]

J. Zhejiang Univ. Sci. (1)

J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).

Microwave Opt. Technol. Lett. (1)

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. E (1)

O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005).
[CrossRef]

Phys. Lett. A (1)

C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003).
[CrossRef]

Phys. Rev. A (6)

M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004).
[CrossRef]

C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009).
[CrossRef]

D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010).
[CrossRef]

J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005).
[CrossRef]

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009).
[CrossRef]

P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004).
[CrossRef]

Phys. Rev. B (4)

J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005).
[CrossRef]

J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009).
[CrossRef]

J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010).
[CrossRef]

T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005).
[CrossRef]

Phys. Rev. Lett. (9)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef]

L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007).
[CrossRef]

Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006).
[CrossRef]

Physica (Utrecht) (1)

T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961).
[CrossRef]

Prog. Opt. (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (5)

D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2001), Chap. 4, pp. 159–162.

D. M. Cook, The Theory of the Electromagnetic Field (Prentice-Hall, 1975), Chap. 11.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.

S. Gasiorowicz, Quantum Physics, 3rd ed. (Wiley, 2003), pp. 193–264.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of a single-photon far-off resonant system for realizing negative refractive index. The electric and magnetic fields of an incident propagating lightwave drive the electric-dipole allowed transition |2|3 and the magnetic-dipole allowed transition |1|2, respectively. Though the electric and magnetic fields of the applied lightwave are off-resonant with their respective transitions, the simultaneously electric- and magnetic-dipole allowed transitions can possibly occur because of two-photon quantum coherence.

Fig. 2.
Fig. 2.

Both the real and the imaginary parts of the permittivity εr and the permeability μr of the atomic vapor versus the normalized off-resonant frequency Δ/Γ31. Four representative cases with the frequency detunings Δ=+3.0Γ31, +1.5Γ31, 0.0Γ31, and 1.5Γ31 are considered.

Fig. 3.
Fig. 3.

Both the real and the imaginary parts of the refractive index nr and the relative impedance ηr of the atomic vapor versus the normalized off-resonant frequency Δ/Γ31. Four representative cases with the frequency detunings Δ=+3.0Γ31, +1.5Γ31, 0.0Γ31, and 1.5Γ31 are considered.

Fig. 4.
Fig. 4.

Density matrix elements of the atomic system versus the normalized off-resonant frequency Δ/Γ31 corresponding to the four representative cases with the frequency detunings Δ=+3.0Γ31, +1.5Γ31, 0.0Γ31, and 1.5Γ31.

Fig. 5.
Fig. 5.

Tunable electric permittivity and magnetic permeability depending on both the normalized off-resonant frequency ΔEB/Γ31 and the normalized electric Rabi frequency ΩE/Γ31. The frequency detuning Δ=+1.5Γ31. There are some bands for the simultaneously negative permittivity and permeability.

Fig. 6.
Fig. 6.

Tunable refractive index and the impedance depending on both the normalized off-resonant frequency ΔEB/Γ31 and the normalized electric Rabi frequency ΩE/Γ31. The frequency detuning Δ=+1.5Γ31. The refractive index has a negative real part in the parameter ranges of interest of ΔEB/Γ31 and ΩE/Γ31.

Fig. 7.
Fig. 7.

Density matrix elements depending on both the normalized off-resonant frequency ΔEB/Γ31 and the normalized electric Rabi frequency ΩE/Γ31. The frequency detuning Δ=+1.5Γ31.

Fig. 8.
Fig. 8.

Tunable electric permittivity and magnetic permeability depending on both the normalized off-resonant frequency ΔEB/Γ31 and the normalized electric Rabi frequency ΩE/Γ31. The frequency detuning Δ=1.5Γ31. There are some bands for the simultaneously negative permittivity and permeability.

Fig. 9.
Fig. 9.

Tunable refractive index and the impedance depending on both the normalized off-resonant frequency ΔEB/Γ31 and the normalized electric Rabi frequency ΩE/Γ31. The frequency detuning Δ=1.5Γ31. The refractive index has a negative real part in the parameter ranges of interest of ΔEB/Γ31 and ΩE/Γ31.

Fig. 10.
Fig. 10.

Density matrix elements depending on both the normalized off-resonant frequency ΔEB/Γ31 and the normalized electric Rabi frequency ΩE/Γ31. The frequency detuning Δ=1.5Γ31.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ˙21=(Γ21+γph+iΔB)ρ21+i2ΩE*ρ31+i2ΩB(ρ11ρ22),ρ˙31=[Γ31+i(ΔB+ΔE)]ρ31+i2ΩEρ21i2ΩBρ32,ρ˙32=(Γ32+iΔE)ρ32i2ΩB*ρ31+i2ΩE(ρ22ρ33),ρ˙22=γ21ρ22+γ32ρ33i2ΩEρ23+i2ΩE*ρ32i2ΩB*ρ21+i2ΩBρ12,ρ˙33=(γ31+γ32)ρ33i2ΩE*ρ32+i2ΩEρ23,ρ˙11=ρ˙22ρ˙33,
βe=2|P23|2ε0ΩEρ32,βm=2μ0|m12|2ΩBρ21.
εr=1+23Nβe113Nβe,μr=1+23Nβm113Nβm,

Metrics