Abstract

We calculate the delay time and noise spectrum of a squeezed state throughout an electromagnetically induced transparency medium with dynamic Stark splitting. It is shown that the noise spectrum splits into two parts with the same delay time, so that the delayed squeezing can survive well in two channels. Furthermore, we show that the two squeezing channels as well as the delay time can be manipulated via one-photon detuning and detection frequency such that the quantum state with high delay time and squeezing can be well preserved. This avoids the influence of large noise from laser near zero detection frequency.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  2. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef]
  3. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
    [CrossRef]
  4. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
    [CrossRef]
  5. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
    [CrossRef]
  6. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
    [CrossRef]
  7. C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
    [CrossRef]
  8. C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002).
    [CrossRef]
  9. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [CrossRef]
  10. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
    [CrossRef]
  11. A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
    [CrossRef]
  12. A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: cavity versus single-pass schemes,” Phys. Rev. A 71, 043801 (2005).
    [CrossRef]
  13. G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
    [CrossRef]
  14. M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
    [CrossRef]
  15. D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
    [CrossRef]
  16. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef]
  17. J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
    [CrossRef]
  18. G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
    [CrossRef]
  19. Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
    [CrossRef]
  20. E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
    [CrossRef]
  21. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
    [CrossRef]
  22. S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
    [CrossRef]
  23. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
    [CrossRef]
  24. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
    [CrossRef]
  25. L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
    [CrossRef]
  26. T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010).
    [CrossRef]
  27. Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
    [CrossRef]
  28. J. Hald and E. S. Polzik, “Mapping a quantum state of light onto atoms,” J. Opt. B: Quantum Semiclass. Opt. 3, S83–S92 (2001).
  29. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
    [CrossRef]
  30. J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” J. Opt. Soc. Am. B 15, 1177–1186 (1998).
    [CrossRef]

2011 (1)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[CrossRef]

2010 (2)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010).
[CrossRef]

2009 (3)

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[CrossRef]

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
[CrossRef]

2008 (4)

G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
[CrossRef]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[CrossRef]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[CrossRef]

2007 (2)

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
[CrossRef]

2006 (1)

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

2005 (4)

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: cavity versus single-pass schemes,” Phys. Rev. A 71, 043801 (2005).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

2004 (1)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

2003 (1)

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

2002 (2)

C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

2001 (3)

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

J. Hald and E. S. Polzik, “Mapping a quantum state of light onto atoms,” J. Opt. B: Quantum Semiclass. Opt. 3, S83–S92 (2001).

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

1998 (1)

1997 (2)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1995 (1)

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

1992 (1)

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[CrossRef]

Abi-Salloum, T. Y.

T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010).
[CrossRef]

Afzelius, M.

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[CrossRef]

Akamatsu, D.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Akiba, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

Akulshin, A. M.

André, A.

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Appel, J.

E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
[CrossRef]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[CrossRef]

Arikawa, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Bachor, H.-A.

G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
[CrossRef]

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

Bai, Y.

J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
[CrossRef]

Baryakhtar, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Bowen, W. P.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

Bramati, A.

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: cavity versus single-pass schemes,” Phys. Rev. A 71, 043801 (2005).
[CrossRef]

Buchler, B. C.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[CrossRef]

G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
[CrossRef]

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

Cai, J.

J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
[CrossRef]

Camparo, J. C.

Campbell, G.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[CrossRef]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[CrossRef]

Chen, Y. C.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Chiu, H. Y.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Chou, C. W.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Cirac, J. I.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Crescimanno, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Dantan, A.

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: cavity versus single-pass schemes,” Phys. Rev. A 71, 043801 (2005).
[CrossRef]

Davis, J. P.

T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010).
[CrossRef]

de Riedmatten, H.

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Eisaman, M. D.

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Felinto, D.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Figueroa, E.

E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
[CrossRef]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[CrossRef]

Fiurášek, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

Fu, G.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Furusawa, A.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Gao, J.

J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Gisin, N.

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[CrossRef]

Glöckl, O.

G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
[CrossRef]

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

Hald, J.

J. Hald and E. S. Polzik, “Mapping a quantum state of light onto atoms,” J. Opt. B: Quantum Semiclass. Opt. 3, S83–S92 (2001).

Han, L.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Henry, B.

T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010).
[CrossRef]

Hétet, G.

G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
[CrossRef]

G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[CrossRef]

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

Hohensee, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Honda, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

Hope, J. J.

G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[CrossRef]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

Hosseini, M.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[CrossRef]

Hsu, M. T. L.

G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
[CrossRef]

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Jiang, L.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Jin, S. Z.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Johnsson, M.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

Johnsson, M. T.

G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[CrossRef]

Julsgaard, B.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002).
[CrossRef]

Kimble, H. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[CrossRef]

Korystov, D.

E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
[CrossRef]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[CrossRef]

Kozuma, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Kröll, S.

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

Lam, P. K.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[CrossRef]

G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008).
[CrossRef]

G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[CrossRef]

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

Langford, N. K.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Lee, K. C.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Li, X.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Li, Y. Q.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Liao, Y. A.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Lobino, M.

E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
[CrossRef]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[CrossRef]

Longdell, J. J.

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Lukin, M. D.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

Lvovsky, A. I.

E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
[CrossRef]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[CrossRef]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Manson, N. B.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Moiseev, S. A.

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

Nagatsuka, S.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Narducci, F. A.

T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010).
[CrossRef]

Nunn, J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Peng, A.

G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[CrossRef]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

Phillips, D. F.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Pinard, M.

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: cavity versus single-pass schemes,” Phys. Rev. A 71, 043801 (2005).
[CrossRef]

Polyakov, S. V.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Polzik, E. S.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002).
[CrossRef]

J. Hald and E. S. Polzik, “Mapping a quantum state of light onto atoms,” J. Opt. B: Quantum Semiclass. Opt. 3, S83–S92 (2001).

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[CrossRef]

Reim, K. F.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Schori, C.

C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002).
[CrossRef]

Sherson, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

Simon, C.

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[CrossRef]

Sørensen, J. L.

C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002).
[CrossRef]

Sparkes, B. M.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[CrossRef]

Su, J. J.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Suter, D.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Tanimura, T.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Van Camp, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Van der Wal, C. H.

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Van Enk, S. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Walmsley, I. A.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Walsworth, R. L.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Wang, T.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Wei, C.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Xiao, M.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Xiao, Y.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Yang, L.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Yelin, S. F.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

Yokoi, Y.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Yu, I. A.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Zhang, J.

J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
[CrossRef]

Zhang, L.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

Zhu, S.-Y.

J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
[CrossRef]

Zibrov, A. S.

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt. (1)

J. Hald and E. S. Polzik, “Mapping a quantum state of light onto atoms,” J. Opt. B: Quantum Semiclass. Opt. 3, S83–S92 (2001).

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[CrossRef]

Nat. Photonics (1)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[CrossRef]

Nature (2)

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004).
[CrossRef]

New J. Phys. (1)

E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (11)

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009).
[CrossRef]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007).
[CrossRef]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[CrossRef]

A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: cavity versus single-pass schemes,” Phys. Rev. A 71, 043801 (2005).
[CrossRef]

G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[CrossRef]

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[CrossRef]

T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010).
[CrossRef]

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Phys. Rev. Lett. (9)

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002).
[CrossRef]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[CrossRef]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[CrossRef]

M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Science (1)

C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of a four-level system and the corresponding dressed-state diagram.

Fig. 2.
Fig. 2.

Delay time ΔT as a function of the normalized probe detuning Δ1/γab. The Rabi frequency of the switch field and detuning of the interacting field are Ωs=0, Δ2=0, Δ3=0 (solid black curve), Ωs=0.6, Δ2=0, Δ3=0 (dashed dotted blue curve), Ωs=0.6, Δ2=1, Δ3=0 (dashed red curve), and Ωs=0.6, Δ2=0, Δ3=1 (short dashed green curve). The other parameters are |g|2NL/c=25, L=3.5×102, γac=γad=0.01, and Ωc=0.8.

Fig. 3.
Fig. 3.

Output amplitude and phase noise (left axis) and probe absorption (right axis) versus probe detuning. The black solid and blue dashed dotted curves show the total output amplitude and phase noise SX(L,ω=0) and SY(L,ω=0), respectively. The red dashed curves represent the probe absorption. (a) Ωs=0, (b) Ωs=1, and (c) Ωs=2. The other parameters are |g|2NL/c=25, γac=γad=0.01, Ωc=3.6, and Δ2=Δ3=0.

Fig. 4.
Fig. 4.

Output amplitude noise SX(L,ω=0) versus probe detuning for different detunings of the switching field. Parameters are Ωc=3.6, Ωs=1, and Δ2=0, with (a) Δ3=0, (b) Δ3=1, and (c) Δ3=2, with the other parameters the same as those in Fig. 3.

Fig. 5.
Fig. 5.

Output amplitude noise SX(L,ω=0) versus probe detuning for different detunings of the coupling field. Parameters are Ωc=3.6, Ωs=1, and Δ3=0, with (a) Δ2=0, (b) Δ2=1, and (c) Δ2=2, with the other parameters the same as those in Fig. 3.

Fig. 6.
Fig. 6.

Output amplitude noise SX(L,0) versus probe detuning for different dephasing rates. The black solid curve represents γac=γad=0.01, the blue dashed curve γac=0.01 and γad=0.05, and the red short dashed curve γac=0.05 and γad=0.05. Other parameters are the same as those in Fig. 3.

Fig. 7.
Fig. 7.

Output amplitude noise SX(L,ω) versus detection frequency for different Rabi frequencies of the switching field when the three fields are resonant. The black dotted, red solid, and blue dashed curves represent Ωs=0, 1, and 2, respectively. Other parameters are the same as those in Fig. 3.

Fig. 8.
Fig. 8.

Output amplitude noise for nonzero detection frequency versus probe detuning. (a) Black solid curve: ω=Ωs=1, blue dashed curve: ω=1, Ωs=0; (b) Black solid curve: ω=Ωs=2, blue dashed curve: ω=2, Ωs=0. Other parameters are the same as those in Fig. 3.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ^˙ab=(γab+iΔ1)σ^ab+iga^+iΩcσ^ac+F^ab,
σ^˙ac=[γac+i(Δ1Δ2)]σ^ac+iΩc*σ^ab+iΩsσ^ad+F^ac,
σ^˙ad=[γad+i(Δ1Δ2Δ3)]σ^ad+iΩs*σ^ac+F^ad,
(/t+c(/z))a^=ig*Nσ^ab,
a^(L,ω)=a^(0,ω)exp(Λ(ω)L)(g*N/c)0LF^(s,ω)exp(Λ(ω)(Ls))ds,
Λ(ω)=(|g|2N/c)×[(r2r3+|Ωs|2)/Z(ω)]iω/c
F^(s,ω)=[iΩcΩsF^ad(s,ω)+Ωcr3F^ac(s,ω)i(r2r3+|Ωs|2)F^ab(s,ω)]/Z(ω),
ΔT=(L/c){|g|2N×Re[|Ωc|2(r32|Ωs|2)(r2×r3+|Ωs|2)2]/[r1(r2×r3+|Ωs|2)+r3|Ωc|2]2}|ω=0.
F^ac(s,ω)F^ac+(s,ω)=γacLδ(ss)δ(ωω)/N,
F^ad(s,ω)F^ad+(s,ω)=(2γadγac)Lδ(ss)δ(ωω)/N,
F^ab(s,ω)F^ab+(s,ω)=(2γabγac)Lδ(ss)δ(ωω)/N,
F^ac+(s,ω)F^ac(s,ω)=γacLδ(ss)δ(ωω)/N.
SX(L,ω)={(SX(0,ω)/4)[exp([Λ(ω)+Λ(ω)]L)+exp([Λ(ω)+Λ*(ω)]L)+exp([Λ*(ω)+Λ(ω)]L)+exp([Λ*(ω)+Λ*(ω)]L)]}{(SY(0,ω)/4)[exp([Λ(ω)+Λ(ω)]L)exp([Λ(ω)+Λ*(ω)]L)exp([Λ*(ω)+Λ(ω)]L)+exp([Λ*(ω)+Λ*(ω)]L)]}+{(|g|2NL/c)×[1exp([Λ(ω)+Λ*(ω)]L]/([Λ(ω)+Λ*(ω)]L)×[|Ωc|2|r3|2rac+|Ωc|2|Ωs|2(2radrac)+|r2r3+|Ωs|2|2(2rabrac)]/|Z(ω)|2+(|g|2NL/c)×[1exp([Λ(ω)+Λ*(ω)]L]/([Λ(ω)+Λ*(ω)]L)×[|Ωc|2|r3(ω)|2rac]/|Z(ω)|2}
SY(L,ω)={(SX(0,ω)/4)[exp([Λ(ω)+Λ(ω)]L)exp([Λ(ω)+Λ*(ω)]L)exp([Λ*(ω)+Λ(ω)]L)+exp([Λ*(ω)+Λ*(ω)]L)]}+{(SY(0,ω)/4)[exp([Λ(ω)+Λ(ω)]L)+exp([Λ(ω)+Λ*(ω)]L)+exp([Λ*(ω)+Λ(ω)]L)+exp([Λ*(ω)+Λ*(ω)]L)]}+{(|g|2NL/c)×[1exp([Λ(ω)+Λ*(ω)]L]/([Λ(ω)+Λ*(ω)]L)×[|Ωc|2|r3|2rac+|Ωc|2|Ωs|2(2radrac)+|r2r3+|Ωs|2|2(2rabrac)]/|Z(ω)|2+(|g|2NL/c)×[1exp([Λ(ω)+Λ*(ω)]L]/([Λ(ω)+Λ*(ω)]L)×[|Ωc|2|r3(ω)|2rac]/|Z(ω)|2}.

Metrics