Abstract

Realization of highly efficient holographic structures can be obtained by combining the polymer liquid crystal polymer slices (POLICRYPS) technique and the use of a spatial light modulator. To achieve this result, a new prepolymer mixture is necessary that is sensitive to visible light and fulfills all requirements of the POLICRYPS technique. In this paper, we report on our efforts to realize this new mixture and on the first attempts made for fabricating one-dimensional POLICRYPS gratings. Newly obtained diffractive structures have been compared with standard POLICRYPS showing negligible differences.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]
  2. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (Taylor & Francis, 2002).
  3. J. M. Kohler and W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques (Wiley-VCH, 2007).
  4. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  5. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082(2002).
  6. M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid crystal/polymer composite: threshold behavior and morphology,” Appl. Phys. Lett. 83, 1331–1333 (2003).
    [CrossRef]
  7. M. J. Escuti and G. P. Crawford, “Mesoscale three-dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic,” Mol. Cryst. Liq. Cryst. 421, 23–36 (2004).
    [CrossRef]
  8. N. Savage, “Digital spatial light modulator,” Nat. Photon. 3, 170–172 (2009).
    [CrossRef]
  9. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008).
    [CrossRef]
  10. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
    [CrossRef]
  11. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004).
    [CrossRef]
  12. R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
    [CrossRef]
  13. R. Caputo, A. V. Sukhov, C. P. Umeton, and A. Veltri, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005).
    [CrossRef]
  14. W.-B. Huang, Y-G. Liu, Z-H. Diao, C-L. Yang, L-S. Yao, J. Ma, and L. Xuan, “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology,” Appl. Opt. 51, 4013–4020 (2012).
    [CrossRef]
  15. L. De Sio, N. V. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008).
    [CrossRef]
  16. L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
    [CrossRef]
  17. G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. P. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36, 4755–4757 (2011).
    [CrossRef]
  18. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
    [CrossRef]
  19. R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
    [CrossRef]
  20. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
    [CrossRef]
  21. L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
    [CrossRef]
  22. M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. P. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20, 23138–23143 (2012).
    [CrossRef]
  23. C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Pol. Sci. A 42, 5301–5338 (2004).
    [CrossRef]
  24. M. J. Kade, D. J. Burke, and C. J. Hawker, “The power of thiol-ene chemistry,” J. Pol. Sci. A 48, 743–750 (2009).
    [CrossRef]
  25. L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011).
    [CrossRef]
  26. S. A. Khan, “Effect of shears on gelation of UV curable polymers,” J. Rheol. 36, 573–587 (1992).
    [CrossRef]
  27. L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
    [CrossRef]
  28. A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004).
    [CrossRef]
  29. M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-raman investigation of periodic structures realized in liquid-crystalline composites,” Opt. Express 19, 10494–10500 (2011).
    [CrossRef]
  30. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. Steeves, and B. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009).
    [CrossRef]
  31. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
    [CrossRef]
  32. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
    [CrossRef]

2012 (2)

2011 (3)

2010 (3)

L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

2009 (5)

M. J. Kade, D. J. Burke, and C. J. Hawker, “The power of thiol-ene chemistry,” J. Pol. Sci. A 48, 743–750 (2009).
[CrossRef]

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. Steeves, and B. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

N. Savage, “Digital spatial light modulator,” Nat. Photon. 3, 170–172 (2009).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

2008 (3)

2006 (3)

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
[CrossRef]

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

2005 (2)

R. Caputo, A. V. Sukhov, C. P. Umeton, and A. Veltri, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

2004 (5)

M. J. Escuti and G. P. Crawford, “Mesoscale three-dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic,” Mol. Cryst. Liq. Cryst. 421, 23–36 (2004).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004).
[CrossRef]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Pol. Sci. A 42, 5301–5338 (2004).
[CrossRef]

2003 (1)

M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid crystal/polymer composite: threshold behavior and morphology,” Appl. Phys. Lett. 83, 1331–1333 (2003).
[CrossRef]

2002 (1)

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

1992 (1)

S. A. Khan, “Effect of shears on gelation of UV curable polymers,” J. Rheol. 36, 573–587 (1992).
[CrossRef]

Abbate, G.

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Asquini, R.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. P. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36, 4755–4757 (2011).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

Barna, V.

M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. P. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20, 23138–23143 (2012).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Bartolino, R.

L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Beccherelli, R.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. P. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36, 4755–4757 (2011).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

Brown, D. P.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Bunning, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Bunning, T. J.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082(2002).

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Burke, D. J.

M. J. Kade, D. J. Burke, and C. J. Hawker, “The power of thiol-ene chemistry,” J. Pol. Sci. A 48, 743–750 (2009).
[CrossRef]

Caputo, R.

M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. P. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20, 23138–23143 (2012).
[CrossRef]

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-raman investigation of periodic structures realized in liquid-crystalline composites,” Opt. Express 19, 10494–10500 (2011).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

L. De Sio, N. V. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

R. Caputo, A. V. Sukhov, C. P. Umeton, and A. Veltri, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004).
[CrossRef]

Castriota, M.

Cazzanelli, E.

Chandra, S.

Crawford, G. P.

M. J. Escuti and G. P. Crawford, “Mesoscale three-dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic,” Mol. Cryst. Liq. Cryst. 421, 23–36 (2004).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid crystal/polymer composite: threshold behavior and morphology,” Appl. Phys. Lett. 83, 1331–1333 (2003).
[CrossRef]

d’Alessandro, A.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. P. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36, 4755–4757 (2011).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

De Luca, A.

M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. P. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20, 23138–23143 (2012).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

De Sio, L.

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-raman investigation of periodic structures realized in liquid-crystalline composites,” Opt. Express 19, 10494–10500 (2011).
[CrossRef]

L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. P. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36, 4755–4757 (2011).
[CrossRef]

L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
[CrossRef]

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

L. De Sio, N. V. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef]

Diao, Z-H.

Donisi, D.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

Escuti, M. J.

M. J. Escuti and G. P. Crawford, “Mesoscale three-dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic,” Mol. Cryst. Liq. Cryst. 421, 23–36 (2004).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid crystal/polymer composite: threshold behavior and morphology,” Appl. Phys. Lett. 83, 1331–1333 (2003).
[CrossRef]

Fasanella, A.

Ferjani, S.

L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011).
[CrossRef]

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

Fritzsche, W.

J. M. Kohler and W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques (Wiley-VCH, 2007).

Gilardi, G.

Hao, Q.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Hawker, C. J.

M. J. Kade, D. J. Burke, and C. J. Hawker, “The power of thiol-ene chemistry,” J. Pol. Sci. A 48, 743–750 (2009).
[CrossRef]

Hoke, L.

Hoyle, C. E.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Pol. Sci. A 42, 5301–5338 (2004).
[CrossRef]

Hrozhyk, U.

Huang, T. J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Huang, W.-B.

Ikeda, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Infusino, M.

Kade, M. J.

M. J. Kade, D. J. Burke, and C. J. Hawker, “The power of thiol-ene chemistry,” J. Pol. Sci. A 48, 743–750 (2009).
[CrossRef]

Khan, S. A.

S. A. Khan, “Effect of shears on gelation of UV curable polymers,” J. Rheol. 36, 573–587 (1992).
[CrossRef]

Khoo, I. C.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Kimball, B.

Klosterman, J.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Kohler, J. M.

J. M. Kohler and W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques (Wiley-VCH, 2007).

Lee, T. Y.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Pol. Sci. A 42, 5301–5338 (2004).
[CrossRef]

Liou, J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Liu, Y. J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Liu, Y-G.

Lloyd, P. F.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Ma, J.

Madou, M. J.

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (Taylor & Francis, 2002).

Marino, A.

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008).
[CrossRef]

Natarajan, L.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Natarajan, L. V.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082(2002).

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Nersisyan, S.

Pezzi, L.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

Piccirillo, B.

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008).
[CrossRef]

Price, G.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Qi, J.

M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid crystal/polymer composite: threshold behavior and morphology,” Appl. Phys. Lett. 83, 1331–1333 (2003).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Roper, T.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Pol. Sci. A 42, 5301–5338 (2004).
[CrossRef]

Santamato, E.

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008).
[CrossRef]

Savage, N.

N. Savage, “Digital spatial light modulator,” Nat. Photon. 3, 170–172 (2009).
[CrossRef]

Scaramuzza, N.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Serak, S.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
[CrossRef]

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. Steeves, and B. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Smalley, J. S. T.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Steeves, D.

Strangi, G.

L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Sukhov, A. V.

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
[CrossRef]

R. Caputo, A. V. Sukhov, C. P. Umeton, and A. Veltri, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004).
[CrossRef]

Sutherland, R.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Sutherland, R. L.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082(2002).

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Tabiryan, N.

Tabiryan, N. V.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

L. De Sio, N. V. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Tedesco, A.

L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
[CrossRef]

Tkachenko, V.

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008).
[CrossRef]

Tomlin, D.

Tondiglia, V.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Tondiglia, V. P.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082(2002).

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Tsutsumi, O.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Umeton, C.

M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-raman investigation of periodic structures realized in liquid-crystalline composites,” Opt. Express 19, 10494–10500 (2011).
[CrossRef]

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

L. De Sio, N. V. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef]

Umeton, C. P.

M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. P. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20, 23138–23143 (2012).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. P. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36, 4755–4757 (2011).
[CrossRef]

L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011).
[CrossRef]

L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

R. Caputo, A. V. Sukhov, C. P. Umeton, and A. Veltri, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005).
[CrossRef]

Urbas, A.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Veltri, A.

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

L. De Sio, N. V. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
[CrossRef]

R. Caputo, A. V. Sukhov, C. P. Umeton, and A. Veltri, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004).
[CrossRef]

Versace, C. C.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Wofford, J. M.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Xuan, L.

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Yang, C-L.

Yao, L-S.

Zito, G.

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008).
[CrossRef]

Adv. Mater. (2)

L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid crystal/polymer composite: threshold behavior and morphology,” Appl. Phys. Lett. 83, 1331–1333 (2003).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

J. Disp. Technol. (1)

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006).
[CrossRef]

J. Opt. A (2)

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009).
[CrossRef]

R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Pol. Sci. A (2)

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Pol. Sci. A 42, 5301–5338 (2004).
[CrossRef]

M. J. Kade, D. J. Burke, and C. J. Hawker, “The power of thiol-ene chemistry,” J. Pol. Sci. A 48, 743–750 (2009).
[CrossRef]

J. Rheol. (1)

S. A. Khan, “Effect of shears on gelation of UV curable polymers,” J. Rheol. 36, 573–587 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

M. J. Escuti and G. P. Crawford, “Mesoscale three-dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic,” Mol. Cryst. Liq. Cryst. 421, 23–36 (2004).
[CrossRef]

Nat. Photon. (1)

N. Savage, “Digital spatial light modulator,” Nat. Photon. 3, 170–172 (2009).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Polymer (1)

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Soft Matter (1)

L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011).
[CrossRef]

Other (2)

M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (Taylor & Francis, 2002).

J. M. Kohler and W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques (Wiley-VCH, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Interferometric optical setup for realizing POLICRYPS diffraction gratings by using visible light (λ=532nm).

Fig. 2.
Fig. 2.

(a) Molecular structure and photo-dissociation of the Irgacure 784 molecule. (b) Typical absorption spectrum of Irgacure 784 dissolved in toluene.

Fig. 3.
Fig. 3.

4f Fourier setup for image reconstruction.

Fig. 4.
Fig. 4.

Samples cured in the same experimental conditions, with different percentages of NVP in the initial blend: (a) 6 wt. %, (b) 3 wt. %, and (c) 1 wt. %. Both the extension of the liquid-crystal regions and the droplets size vary with the NVP concentration.

Fig. 5.
Fig. 5.

POM micrographs of the POLICRYPS grating obtained by curing with visible light. (a) Grating oriented at 45° with respect to the analyzer axis direction. (b) Grating oriented parallel to the analyzer axis direction.

Fig. 6.
Fig. 6.

Optical setup used for the characterization of the DE of the grating as a function of the probe polarization direction.

Fig. 7.
Fig. 7.

(a) Polar plot of the DE of zero (squares) and first (dots) diffracted orders as a function of the incident polarization direction for the grating obtained by using the holographic standard setup of Fig. 1 with visible curing light. The maximum DE of the first order is about 20%. (b) Switching behavior of first-order (dots) and zeroth-order (squares) diffraction efficiencies as a function of the amplitude of the external electric field applied to the cell.

Fig. 8.
Fig. 8.

DE behavior of p-polarized (squares) and s-polarized (dots) probe light as a function of the temperature of the sample.

Fig. 9.
Fig. 9.

POM micrographs of the POLICRYPS grating cured by the striped pattern projected by the SLM. (a) Grating oriented at 45° with respect to the analyzer axis direction. (b) Grating oriented parallel to the analyzer axis direction.

Fig. 10.
Fig. 10.

(a) Polar plot of the DE of zero (dots) and first (squares) diffracted order of the SLM-cured POLICRYPS as a function of the incident polarization direction. The maximum DE of the first order is 21%, while the zeroth-order transmittance is 74%. (b) Switching behavior of p-polarized (squares) and s-polarized (dots) probe light as a function of the external electric field applied to the cell.

Tables (2)

Tables Icon

Table 1. Prepolymer Mixture 1

Tables Icon

Table 2. Prepolymer Mixture 2

Metrics