Abstract

We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband amplified spontaneous emission pumps or continua (spectral widths >10THz), group-velocity matching of a near-IR pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal coherence improvements. When using relatively narrowband filtered noise pumps (e.g., spectral widths <1THz), the signal from optical parametric, sum-frequency, and difference-frequency generation has nearly the same spectral width as that of the incoherent pump.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2, 701–702 (1966).
    [CrossRef]
  2. J. Ducuing and N. Bloembergen, “Statistical fluctuations in nonlinear optical processes,” Phys. Rev. 133, A1493–A1502 (1964).
    [CrossRef]
  3. H. Hsu, “Parametric interactions involving multiple elementary scattering processes,” J. Appl. Phys. 38, 1787–1789 (1967).
    [CrossRef]
  4. R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
    [CrossRef]
  5. A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical parametric oscillation excited by an incoherent conical beam,” Opt. Commun. 143, 72–74 (1997).
    [CrossRef]
  6. A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998).
    [CrossRef]
  7. A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, “Combining effect in a multiple-beam-pumped optical parametric amplifier,” J. Opt. Soc. Am. B 15, 1135–1139 (1998).
    [CrossRef]
  8. A. Piskarskas, V. Smilgevicius, A. Stabinis, and V. Vaicaitis, “Spatially cumulative phenomena and output patterns in optical parametric oscillators and generators pumped by conical beams,” J. Opt. Soc. Am. B 16, 1566–1578 (1999).
    [CrossRef]
  9. C. Montes, W. Grundkötter, H. Suche, and W. Sohler, “Coherent signal from incoherently cw-pumped singly resonant Ti:LiNbO3 integrated optical parametric oscillators,” J. Opt. Soc. Am. B 24, 2796–2806 (2007).
    [CrossRef]
  10. G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008).
    [CrossRef]
  11. A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).
    [CrossRef]
  12. A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013(2001).
    [CrossRef]
  13. A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).
    [CrossRef]
  14. A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).
    [CrossRef]
  15. A. Picozzi and M. Haelterman, “Condensation in Hamiltonian parametric wave interaction,” Phys. Rev. Lett. 92, 103901 (2004).
    [CrossRef]
  16. C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).
    [CrossRef]
  17. G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
    [CrossRef]
  18. G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
    [CrossRef]
  19. Y. Yan and C. Yang, “Coherent light wave generated from incoherent pump light in nonlinear Kerr medium,” J. Opt. Soc. Am. B 26, 2059–2063 (2009).
    [CrossRef]
  20. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).
  21. See, e.g., A. Picozzi, “Toward a nonequilibrium thermodynamic description of incoherent nonlinear optics,” Opt. Express 15, 9063–9083 (2007).
    [CrossRef]
  22. S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the dispersive three-wave interaction,” Europhys. Lett. 79, 64001 (2007).
    [CrossRef]
  23. F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
    [CrossRef]
  24. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
    [CrossRef]
  25. M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
    [CrossRef]
  26. S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B 27, 1707–1711 (2010).
    [CrossRef]
  27. Dispersion data taken from Handbook of Optics, M. Bass, ed., 2nd ed. (McGraw-Hill, 1994), Vol. 2.
  28. See, e.g., L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  29. Note that the nonzero value of μ at the crystal input z=0originates in the relatively small temporal window considered in the simulations, T=21  ps. By increasing T, one reduces the corresponding grid discretization in frequency space, dω=2π/T, which thus reduces the value of μ(z=0). In other terms, in the thermodynamic limit (the limit in which the power P and T tend to infinity keeping constant P/T), the mutual coherence μ tends to zero. However, given the complexity of the GNEE, only a relatively small temporal window can be considered in the numerical integration.
  30. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
    [CrossRef]
  31. In our examples, the nonlinear length associated with the nonlinear Kerr effect is about 1000 times longer than Lnl and can be neglected in our analysis.

2012 (2)

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
[CrossRef]

2011 (1)

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
[CrossRef]

2010 (4)

S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B 27, 1707–1711 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).
[CrossRef]

2009 (1)

2008 (1)

G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).
[CrossRef]

2004 (2)

A. Picozzi and M. Haelterman, “Condensation in Hamiltonian parametric wave interaction,” Phys. Rev. Lett. 92, 103901 (2004).
[CrossRef]

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).
[CrossRef]

2002 (1)

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).
[CrossRef]

2001 (1)

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013(2001).
[CrossRef]

1999 (1)

1998 (2)

A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998).
[CrossRef]

A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, “Combining effect in a multiple-beam-pumped optical parametric amplifier,” J. Opt. Soc. Am. B 15, 1135–1139 (1998).
[CrossRef]

1997 (1)

A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical parametric oscillation excited by an incoherent conical beam,” Opt. Commun. 143, 72–74 (1997).
[CrossRef]

1968 (1)

R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
[CrossRef]

1967 (1)

H. Hsu, “Parametric interactions involving multiple elementary scattering processes,” J. Appl. Phys. 38, 1787–1789 (1967).
[CrossRef]

1966 (1)

S. H. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2, 701–702 (1966).
[CrossRef]

1964 (1)

J. Ducuing and N. Bloembergen, “Statistical fluctuations in nonlinear optical processes,” Phys. Rev. 133, A1493–A1502 (1964).
[CrossRef]

Andreana, M.

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

Aschieri, P.

G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
[CrossRef]

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).
[CrossRef]

Baronio, F.

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Bliss, D.

Bloembergen, N.

J. Ducuing and N. Bloembergen, “Statistical fluctuations in nonlinear optical processes,” Phys. Rev. 133, A1493–A1502 (1964).
[CrossRef]

Byer, R. H.

R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
[CrossRef]

Canalias, C.

G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
[CrossRef]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
[CrossRef]

Conforti, M.

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Couderc, V.

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

Danielius, R.

De Angelis, C.

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Dubietis, A.

G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008).
[CrossRef]

A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, “Combining effect in a multiple-beam-pumped optical parametric amplifier,” J. Opt. Soc. Am. B 15, 1135–1139 (1998).
[CrossRef]

Ducuing, J.

J. Ducuing and N. Bloembergen, “Statistical fluctuations in nonlinear optical processes,” Phys. Rev. 133, A1493–A1502 (1964).
[CrossRef]

Falkovich, G.

V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).

Fejer, M. M.

Gallo, K.

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).
[CrossRef]

Grundkötter, W.

Haelterman, M.

A. Picozzi and M. Haelterman, “Condensation in Hamiltonian parametric wave interaction,” Phys. Rev. Lett. 92, 103901 (2004).
[CrossRef]

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).
[CrossRef]

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013(2001).
[CrossRef]

Harris, J. S.

Harris, S. E.

R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
[CrossRef]

Harris, S. H.

S. H. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2, 701–702 (1966).
[CrossRef]

Hsu, H.

H. Hsu, “Parametric interactions involving multiple elementary scattering processes,” J. Appl. Phys. 38, 1787–1789 (1967).
[CrossRef]

Jauslin, H. R.

S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the dispersive three-wave interaction,” Europhys. Lett. 79, 64001 (2007).
[CrossRef]

Kozlov, V. V.

Kuo, P. S.

L’vov, V. S.

V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).

Lagrange, S.

S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the dispersive three-wave interaction,” Europhys. Lett. 79, 64001 (2007).
[CrossRef]

Mandel, L.

See, e.g., L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Marcinkevicius, A.

A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998).
[CrossRef]

Montes, C.

G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
[CrossRef]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
[CrossRef]

C. Montes, W. Grundkötter, H. Suche, and W. Sohler, “Coherent signal from incoherently cw-pumped singly resonant Ti:LiNbO3 integrated optical parametric oscillators,” J. Opt. Soc. Am. B 24, 2796–2806 (2007).
[CrossRef]

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).
[CrossRef]

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).
[CrossRef]

Oshman, M. K.

R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
[CrossRef]

Pasiskevicius, V.

G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
[CrossRef]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
[CrossRef]

Picozzi, A.

G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
[CrossRef]

S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the dispersive three-wave interaction,” Europhys. Lett. 79, 64001 (2007).
[CrossRef]

See, e.g., A. Picozzi, “Toward a nonequilibrium thermodynamic description of incoherent nonlinear optics,” Opt. Express 15, 9063–9083 (2007).
[CrossRef]

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).
[CrossRef]

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).
[CrossRef]

A. Picozzi and M. Haelterman, “Condensation in Hamiltonian parametric wave interaction,” Phys. Rev. Lett. 92, 103901 (2004).
[CrossRef]

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).
[CrossRef]

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013(2001).
[CrossRef]

Piskarkas, A.

G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008).
[CrossRef]

Piskarskas, A.

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).
[CrossRef]

A. Piskarskas, V. Smilgevicius, A. Stabinis, and V. Vaicaitis, “Spatially cumulative phenomena and output patterns in optical parametric oscillators and generators pumped by conical beams,” J. Opt. Soc. Am. B 16, 1566–1578 (1999).
[CrossRef]

A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, “Combining effect in a multiple-beam-pumped optical parametric amplifier,” J. Opt. Soc. Am. B 15, 1135–1139 (1998).
[CrossRef]

A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998).
[CrossRef]

A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical parametric oscillation excited by an incoherent conical beam,” Opt. Commun. 143, 72–74 (1997).
[CrossRef]

Pyragaite, V.

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).
[CrossRef]

Simanovskii, D. M.

Smilgevicius, V.

A. Piskarskas, V. Smilgevicius, A. Stabinis, and V. Vaicaitis, “Spatially cumulative phenomena and output patterns in optical parametric oscillators and generators pumped by conical beams,” J. Opt. Soc. Am. B 16, 1566–1578 (1999).
[CrossRef]

A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998).
[CrossRef]

A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical parametric oscillation excited by an incoherent conical beam,” Opt. Commun. 143, 72–74 (1997).
[CrossRef]

Sohler, W.

Stabinis, A.

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).
[CrossRef]

A. Piskarskas, V. Smilgevicius, A. Stabinis, and V. Vaicaitis, “Spatially cumulative phenomena and output patterns in optical parametric oscillators and generators pumped by conical beams,” J. Opt. Soc. Am. B 16, 1566–1578 (1999).
[CrossRef]

A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998).
[CrossRef]

A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical parametric oscillation excited by an incoherent conical beam,” Opt. Commun. 143, 72–74 (1997).
[CrossRef]

Strömqvist, G.

G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012).
[CrossRef]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
[CrossRef]

Suche, H.

Tamosauskas, G.

G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008).
[CrossRef]

Tamošauskas, G.

Tonello, A.

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

Vaicaitis, V.

Valiulis, G.

G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008).
[CrossRef]

Vodopyanov, K. L.

Wabnitz, S.

Weyburne, D.

Wolf, E.

See, e.g., L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Yan, Y.

Yang, C.

Young, J. F.

R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
[CrossRef]

Yu, X.

Zakharov, V. E.

V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).

Appl. Phys. B (1)

G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968).
[CrossRef]

Europhys. Lett. (1)

S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the dispersive three-wave interaction,” Europhys. Lett. 79, 64001 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. H. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2, 701–702 (1966).
[CrossRef]

IEEE Photon. J. (1)

M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010).
[CrossRef]

J. Appl. Phys. (1)

H. Hsu, “Parametric interactions involving multiple elementary scattering processes,” J. Appl. Phys. 38, 1787–1789 (1967).
[CrossRef]

J. Opt. Soc. Am. B (6)

Laser Phys. Lett. (1)

F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012).
[CrossRef]

Opt. Commun. (3)

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).
[CrossRef]

A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical parametric oscillation excited by an incoherent conical beam,” Opt. Commun. 143, 72–74 (1997).
[CrossRef]

A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

J. Ducuing and N. Bloembergen, “Statistical fluctuations in nonlinear optical processes,” Phys. Rev. 133, A1493–A1502 (1964).
[CrossRef]

Phys. Rev. A (3)

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).
[CrossRef]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Phys. Rev. E (2)

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).
[CrossRef]

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

A. Picozzi and M. Haelterman, “Condensation in Hamiltonian parametric wave interaction,” Phys. Rev. Lett. 92, 103901 (2004).
[CrossRef]

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013(2001).
[CrossRef]

Other (5)

Dispersion data taken from Handbook of Optics, M. Bass, ed., 2nd ed. (McGraw-Hill, 1994), Vol. 2.

See, e.g., L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Note that the nonzero value of μ at the crystal input z=0originates in the relatively small temporal window considered in the simulations, T=21  ps. By increasing T, one reduces the corresponding grid discretization in frequency space, dω=2π/T, which thus reduces the value of μ(z=0). In other terms, in the thermodynamic limit (the limit in which the power P and T tend to infinity keeping constant P/T), the mutual coherence μ tends to zero. However, given the complexity of the GNEE, only a relatively small temporal window can be considered in the numerical integration.

V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).

In our examples, the nonlinear length associated with the nonlinear Kerr effect is about 1000 times longer than Lnl and can be neglected in our analysis.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Dependence of dispersion and group delay versus wavelength for propagation along the extraordinary axis of LiNbO 3 .

Fig. 2.
Fig. 2.

28 THz  spectrum showing GV-matched OPG in an L = 1 cm long PPLN waveguide from a single incoherent pump at λ p = 1550 nm (pump bandwidth of 28 THz, measured at 10 d B from the spectral peak); QPM period Λ = 30.68 μm . Left (right): output spectrum versus frequency (wavelength).

Fig. 3.
Fig. 3.

Growth of the correlation function μ between pump and idler versus propagation length. Dots joined by a blue solid curve (squares joined by a red dot-dashed curve): GV-matched (GV-mismatched) case. Insets show the spectral amplitude of the pump and idler at 1 cm as in Fig. 2.

Fig. 4.
Fig. 4.

Time domain evolution of (a) input pump ASE noise intensity and (b) filtered output signal intensity at 4506 nm.

Fig. 5.
Fig. 5.

Same as in Fig. 2, for a PPLN length L = 4 cm , but in a linear scale.

Fig. 6.
Fig. 6.

Same as in Fig. 2, for the GV-mismatched OPG in an L = 1 cm long PPLN waveguide from a single incoherent pump at λ p = 1550 nm (pump bandwidth of 28 THz, measured at 10 d B from the spectral peak); QPM period Λ = 34.03 μm .

Fig. 7.
Fig. 7.

Same as in Fig. 2, but with a pump bandwidth of 5 THz, measured at 10 dB from the spectral peak.

Fig. 8.
Fig. 8.

Contour plot of the parametric gain G for idler and signal wavelengths versus pump wavelength with (top) the QPM period Λ = 30.68 μm or (bottom) Λ = 34.03 μm .

Fig. 9.
Fig. 9.

(a) Gain g ( ω ) of the signal wave in the presence of an incoherent pump obtained by plotting Eq. (7) with the parameters corresponding to Fig. 2 (solid blue curve) and Fig. 6 (dashed red curve), (b) corresponding signal spectra ( S ( ω ) exp [ g ( ω ) L ] ), after propagation through an L = 1 cm crystal length [in Log 10 scale].

Fig. 10.
Fig. 10.

Same as in Fig. 2, but with an input idler ASE noise source of energy 10 4 smaller than the pump.

Fig. 11.
Fig. 11.

Same as in Fig. 2, but with an input idler ASE noise source of energy 10 2 smaller than the pump. Inset: output spectrum in linear scale.

Fig. 12.
Fig. 12.

GV-matched SFG in a 1 cm long PPLN sample from an incoherent, 28 THz wide ASE noise pump at λ p = 1550 nm and an idler (of energy 10 2 less than the pump) at λ i = 2363 nm , respectively. The signal is generated at λ s = 938 nm with a 7.5 THz spectral width, measured at 10 dB from the peak.

Fig. 13.
Fig. 13.

GV-mismatched SFG with an incoherent idler at λ i = 1276 nm (of energy 10 2 less than the pump) and a pump at λ p = 1550 nm , respectively (with bandwidths of 28 THz); the QPM period is Λ = 15 μm . The 700 nm signal spectral width is equal to 3.9 THz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ z D + α 2 ] A ( z , t ) = N p NL ( z , t , A ) ,
p NL ( 2 ) ( z , t ) = ε 0 χ ( 2 ) ( 2 | A | + 2 exp ( i ω 0 t ) + A 2 exp ( i ω 0 t ) ) / 2 , p NL ( 3 ) ( z , t ) = ε 0 χ ( 3 ) ( 3 | A | 2 A + A 3 exp ( 2 i ω 0 t ) ) / 4 ,
μ ( z ) = | Λ 0 ( z ) | | a p ( z , t ) | 2 | a i ( z , t ) | 2 ,
G = Γ 2 L 2 sinh 2 ( γ L ) / ( γ L ) 2 ,
γ = ( Γ 2 Δ k 2 / 2 ) 1 / 2 ,
Γ 2 = ω s ω i c 2 n s n i I p d 2 ,
d = d eff 2 η 0 n p
g ( ω ) = Re { Δ | ρ i | + 4 ( ( ρ s ρ i ) ω τ 0 + i Δ | ρ i | ) 2 } ,

Metrics