Abstract

We design a silicon microring modulator based on mutual-mode coupling tuning by introducing an electrically tunable grating in the microring. By tuning the grating reflectivity that changes the mutual coupling strength, optical modulation is realized since transmission switches from a peak to a dip at the resonant wavelength with resonance-splitting in the ring. High modulation depth and low energy consumption can be achieved as sufficient grating reflectivity change can be obtained with low drive voltage. Simulations show that the proposed modulator can achieve a modulation depth of 13dB at 1550 nm wavelength with energy consumption of 122.3fJ/bit.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum. Electron. 6, 1312–1317 (2000).
    [CrossRef]
  2. J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
    [CrossRef]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef]
  4. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubi, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
    [CrossRef]
  5. A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.
  6. K. Ogawa, K. Goi, Y. T. Tan, T. Liow, X. Tu, Q. Fang, G. Lo, and Dim-Lee Kwon, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0–12.5 Gbps,” Opt. Express 19, B26–B31 (2011).
    [CrossRef]
  7. R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
    [CrossRef]
  8. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [CrossRef]
  10. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [CrossRef]
  11. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
    [CrossRef]
  12. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010).
    [CrossRef]
  13. P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
    [CrossRef]
  14. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35, 3246–3248 (2010).
    [CrossRef]
  15. W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OM17.
  16. A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010).
    [CrossRef]
  17. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30, 9–14 (2012).
    [CrossRef]
  18. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
    [CrossRef]
  19. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27, 3800–3811 (2009).
    [CrossRef]
  20. M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper IMC2.
  21. T. Ye, Y. Zhou, C. Yan, Y. Li, and Y. Su, “Chirp-free optical modulation using a silicon push–pull coupling microring,” Opt. Lett. 34, 785–787 (2009).
    [CrossRef]
  22. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.
  23. Y. Li, L. Zhang, M. Song, B. Zhang, J. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16, 13342–13348 (2008).
    [CrossRef]
  24. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20, 14722–14733 (2012).
    [CrossRef]
  25. P. Koonath, T. Indukuri, and B. Jalali, “3-D integrated Vernier filters in silicon,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (Optical Society of America, 2006), paper IMG1.
  26. B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
    [CrossRef]
  27. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010).
    [CrossRef]
  28. J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102 (2005).
    [CrossRef]
  29. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
    [CrossRef]
  30. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
    [CrossRef]
  31. T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
    [CrossRef]
  32. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
    [CrossRef]
  33. T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
    [CrossRef]
  34. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
    [CrossRef]
  35. Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.
  36. B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997).
    [CrossRef]
  37. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18  Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of LEOS (IEEE, 2007), pp. 537–538.
  38. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [CrossRef]
  39. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
    [CrossRef]
  40. R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE 704, 32–37 (1986).
  41. S. Fathpour, K. K. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” J. Lightwave Technol. 3, 1211–1217(2007).
  42. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Eletron. 9, 919–933 (1973).
    [CrossRef]
  43. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
    [CrossRef]
  44. M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.
  45. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [CrossRef]
  46. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19, 13557–13564 (2011).
    [CrossRef]
  47. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
    [CrossRef]
  48. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15, 14467–14475 (2007).
    [CrossRef]
  49. C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24, 1433–1439 (2006).
    [CrossRef]
  50. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE2008), pp. 4–6.

2012

2011

2010

2009

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27, 3800–3811 (2009).
[CrossRef]

T. Ye, Y. Zhou, C. Yan, Y. Li, and Y. Su, “Chirp-free optical modulation using a silicon push–pull coupling microring,” Opt. Lett. 34, 785–787 (2009).
[CrossRef]

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
[CrossRef]

T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
[CrossRef]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[CrossRef]

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

2008

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Y. Li, L. Zhang, M. Song, B. Zhang, J. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16, 13342–13348 (2008).
[CrossRef]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

2007

2006

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubi, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[CrossRef]

J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

2002

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

2000

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum. Electron. 6, 1312–1317 (2000).
[CrossRef]

1997

1987

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

1986

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[CrossRef]

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE 704, 32–37 (1986).

1973

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Eletron. 9, 919–933 (1973).
[CrossRef]

Absil, P. P.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Almeida, V. R.

Arita, Y.

Asghari, M.

Assefa, S.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Baba, T.

Barea, L. A. M.

Barwicz, T.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Beausoleil, R. G.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE 704, 32–37 (1986).

Bergman, K.

Biberman, A.

Boeck, R.

Brimont, A.

Calhoun, L. C.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

Chang, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.

Chen, L.

Chrostowski, L.

Chu, S.

Cohen, O.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Crnjanski, J.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

Cunningham, J. E.

Dahlem, M. S.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

Dapkus, P. D.

Davis, J. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

Deane, J. H. B.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Dong, P.

Fang, Q.

Fathpour, S.

S. Fathpour, K. K. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” J. Lightwave Technol. 3, 1211–1217(2007).

Fédéli, J.-M.

Fegadolli, W. S.

Feng, D.

Feng, N.

Feng, N. N.

Franck, T.

Frateschi, N.

Gan, F.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

Gardes, F. Y.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Goi, K.

Green, W. M. J.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Grover, R.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

Gunn, C.

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.

Gutierrez, A. M.

Gwilliam, R.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Headley, W. R.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Ho, P.-T.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Hodge, D.

Holzwarth, C. W.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

Hryniewicz, J. V.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Huang, A.

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.

Ibrahim, T. A.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

Indukuri, T.

P. Koonath, T. Indukuri, and B. Jalali, “3-D integrated Vernier filters in silicon,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (Optical Society of America, 2006), paper IMG1.

Ippen, E. P.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

Ishikura, N.

Jaeger, N. A. F.

Jalali, B.

S. Fathpour, K. K. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” J. Lightwave Technol. 3, 1211–1217(2007).

P. Koonath, T. Indukuri, and B. Jalali, “3-D integrated Vernier filters in silicon,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (Optical Society of America, 2006), paper IMG1.

Johnson, F. G.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Kärtner, F. X.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

Keil, U. D.

Khan, M. H.

Knights, A. P.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Kohl, P. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

Koonath, P.

P. Koonath, T. Indukuri, and B. Jalali, “3-D integrated Vernier filters in silicon,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (Optical Society of America, 2006), paper IMG1.

Krishnamoorthy, A.

Krishnamoorthy, A. V.

Kung, C.

Kwon, Dim-Lee

Laine, J.

Lentine, A. L.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[CrossRef]

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE2008), pp. 4–6.

W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OM17.

Li, G.

Li, Q.

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
[CrossRef]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.

Li, Y.

Liang, H.

Liang, Y.

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.

Liao, L.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubi, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Liao, S.

Liow, T.

Lipson, M.

Little, B.

Little, B. E.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Litvinenko, K. L.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Liu, A.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubi, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Liu, F.

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
[CrossRef]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Lo, G.

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[CrossRef]

Luo, Y.

Manipatruni, S.

Manolatou, C.

Marris-Morini, D.

Marti, J.

Martin, K. P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

Mashanovich, G.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

Mashanovich, G. Z.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Meindl, J. D.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

Michaeli, A.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum. Electron. 6, 1312–1317 (2000).
[CrossRef]

Mirsaidi, S.

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.

Morse, M.

Narasimha, A.

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Ogawa, K.

Oliveira, J. E. B.

Ophir, N.

Paloczi, G. T.

J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102 (2005).
[CrossRef]

Pan, H.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Panepucci, R. R.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Passaro, V. M. N.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

Patel, C. S.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

Pinguet, T.

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.

Poon, J. K. S.

W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27, 3800–3811 (2009).
[CrossRef]

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Popovic, M. A.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper IMC2.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

Preston, K.

Qi, M.

Qian, W.

Qiu, M.

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
[CrossRef]

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
[CrossRef]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.

Raj, K.

Rakich, P. T.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

Rasigade, G.

Reed, G. T.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

Rouger, N.

Rubi, D.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Sacher, W. D.

W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27, 3800–3811 (2009).
[CrossRef]

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubi, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Sanchis, P.

Scherer, A.

Scheuer, J.

J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102 (2005).
[CrossRef]

Schmidt, B.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18  Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of LEOS (IEEE, 2007), pp. 537–538.

Shafiiha, R.

Shakya, J.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18  Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of LEOS (IEEE, 2007), pp. 537–538.

Shank, S. M.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Shen, H.

Shinobu, F.

Shubin, I.

Smith, A. J.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Smith, H. I.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

Song, M.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[CrossRef]

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE 704, 32–37 (1986).

Su, Y.

T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
[CrossRef]

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
[CrossRef]

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

T. Ye, Y. Zhou, C. Yan, Y. Li, and Y. Su, “Chirp-free optical modulation using a silicon push–pull coupling microring,” Opt. Lett. 34, 785–787 (2009).
[CrossRef]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.

Tamanuki, T.

Tan, Y. T.

Thacker, H.

Thomson, D. J.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Tian, Y.

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
[CrossRef]

Timotijevic, B.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

Trotter, D. C.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[CrossRef]

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE2008), pp. 4–6.

W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OM17.

Tsia, K. K.

S. Fathpour, K. K. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” J. Lightwave Technol. 3, 1211–1217(2007).

Tu, X.

Valini, F.

Van, V.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002).
[CrossRef]

Vargas, G.

Vivien, L.

Vlasov, Y. A.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

Wang, J.

Wang, T.

T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
[CrossRef]

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

Wang, X.

Watts, M. R.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[CrossRef]

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE2008), pp. 4–6.

W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OM17.

Willner, A. E.

Wilson, R. A.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Wright, N. M.

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

Xiao, S.

Xu, Q.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18  Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of LEOS (IEEE, 2007), pp. 537–538.

Yan, C.

Yang, J.

Yao, J.

Yariv, A.

J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102 (2005).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Eletron. 9, 919–933 (1973).
[CrossRef]

Ye, T.

Young, R. W.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE2008), pp. 4–6.

Zarkesh-Ha, P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

Zhang, B.

Zhang, L.

Zhang, Z.

T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009).
[CrossRef]

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
[CrossRef]

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.

Zheng, D.

Zheng, X.

Zhou, Y.

Ziebell, M.

Zortman, W. A.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[CrossRef]

W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OM17.

Appl. Phys. Lett.

J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102 (2005).
[CrossRef]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Chinese Opt. Lett.

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009).
[CrossRef]

IBM J. Res. Dev.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[CrossRef]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

IEEE J. Quantum Eletron.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Eletron. 9, 919–933 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum. Electron. 6, 1312–1317 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

J. Lightwave Technol.

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

Opt. Commun.

T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009).
[CrossRef]

Opt. Express

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
[CrossRef]

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010).
[CrossRef]

Y. Li, L. Zhang, M. Song, B. Zhang, J. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16, 13342–13348 (2008).
[CrossRef]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20, 14722–14733 (2012).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[CrossRef]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010).
[CrossRef]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubi, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[CrossRef]

A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010).
[CrossRef]

K. Ogawa, K. Goi, Y. T. Tan, T. Liow, X. Tu, Q. Fang, G. Lo, and Dim-Lee Kwon, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0–12.5 Gbps,” Opt. Express 19, B26–B31 (2011).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15, 14467–14475 (2007).
[CrossRef]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[CrossRef]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
[CrossRef]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19, 13557–13564 (2011).
[CrossRef]

Opt. Lett.

Proc. SPIE

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009).
[CrossRef]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008).
[CrossRef]

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE 704, 32–37 (1986).

Other

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE2008), pp. 4–6.

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18  Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of LEOS (IEEE, 2007), pp. 537–538.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.

M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper IMC2.

P. Koonath, T. Indukuri, and B. Jalali, “3-D integrated Vernier filters in silicon,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (Optical Society of America, 2006), paper IMG1.

W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OM17.

A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of the tunable resonance-splitting based silicon ring modulator.

Fig. 2.
Fig. 2.

(a) Schematic of the grating structure. (b) and (c) Schematic cross sections of the grating segments (b) without circular hole and (c) with circular hole.

Fig. 3.
Fig. 3.

Modulation depth as a function of coupling coefficient κ with (a)  A L = 0.01 , (b)  A L = 0.02 , (c)  A L = 0.05 , and (d)  A L = 0.1 .

Fig. 4.
Fig. 4.

Carrier injection efficiency of the p-i-n diode in the proposed modulator.

Fig. 5.
Fig. 5.

Reflectivity change Δ R as a function of grating length L .

Fig. 6.
Fig. 6.

Simulated grating reflectivity and contrast factor with (a)  L = 6.5 μm and R h = 65 nm , (b)  L = 6.5 μm and R h = 75 nm , (c)  L = 7.5 μm and R h = 65 nm , and (d)  L = 7.5 μm and R h = 75 nm .

Fig. 7.
Fig. 7.

Transmission as a function of (a) carrier density and (b) applied voltage, and reflectivity as function of (c) carrier density, and (d) applied voltage with L = 7.5 μm and R h = 65 nm .

Fig. 8.
Fig. 8.

Periodic responses of ring resonators with different grating parameters (a)  L = 6.5 μm and R h = 65 nm , (b)  L = 6.5 μm and R h = 75 nm , (c)  L = 7.5 μm and R h = 65 nm , and (d)  L = 7.5 μm and R h = 75 nm in both the through port and drop port.

Fig. 9.
Fig. 9.

Spectral responses of the proposed modulator for grating parameters of (a)  L = 6.5 μm and R h = 65 nm , (b)  L = 6.5 μm and R h = 75 nm , (c)  L = 7.5 μm and R h = 65 nm , and (d)  L = 7.5 μm and R h = 75 nm .

Fig. 10.
Fig. 10.

Optical responses of the Bragg reflector and ring resonator, as well as the proposed structure in a range of 100 nm with different grating parameters of (a)  L = 6.5 μm and R h = 65 nm and (b)  L = 7.5 μm and R h = 75 nm .

Fig. 11.
Fig. 11.

Influence of the resonance mismatch Δ λ on (a) modulation depth and (b) insertion loss.

Fig. 12.
Fig. 12.

Schematic of the titanium micro-heater structure for compensating the mismatch between the ring resonance and the minimum reflection point.

Fig. 13.
Fig. 13.

(a) Simulated modulation depth and (b) insertion loss as functions of κ for various L ’s and L s ’s.

Fig. 14.
Fig. 14.

Theoretical calculation of the 3 dB bandwidth as a function of κ considering the limiting factors of free carrier lifetime τ c and photon lifetime τ p .

Tables (2)

Tables Icon

Table 1. Comparison of Previously Demonstrated Silicon Microring Modulators and the Proposed Modulator

Tables Icon

Table 2. Design Parameters and Variables of Four Grating Structures

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T d = S d S i = j κ 2 1 t 2 G a exp ( j φ ) ,
G = t r ( 1 A L ) t 2 a exp ( j φ ) 1 t r t 2 a exp ( j φ ) ,
φ = 2 π [ n eff , r ( L R L ) + n eff , g L ] / λ ,
a = exp [ α ( L R L ) ] ,
ER = 10 lg | T d 2 T d 1 | 2 ,
α eff = α ( L R L ) ln ( 1 A L ) L R ( nep / m ) ,
Energy / bit = 1 / 4 × e × ( Δ N e + Δ N h ) × Volume × V p p ,

Metrics