Abstract

The propagation in a new microstructured plasmon optical fiber specifically designed for sensing of water dissolved chemicals is investigated using a finite element method. The fiber is made by a silica core with a small air hole in the center of the structure, surrounded by six air holes placed at the vertices of a hexagon, and further enclosed by gold and water layers. In order to enhance the sensitivity, the structure is designed to have the phase matching point corresponding to the maximum of the power fraction for a core guided mode in the water and gold layers and to a minimum in the glass layer, and vice versa for the plasmon mode. This way, near the phase matching point there is a strong interaction between the core and plasmon modes, causing a splitting in the real part of the propagation constant and also a shift of the imaginary part of the effective index toward the higher wavelengths. The real part of the group refractive index shows a minimum (maximum for the group velocity) and a very small value of the imaginary part of the group refractive index near the phase matching point for the degenerate core mode. When the analyte refractive index is increased by 0.001 RIU, the phase matching point is shifted by 4 nm toward longer wavelengths, with a corresponding sensitivity better than 2.5×105RIU.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors

Alireza Hassani and Maksim Skorobogatiy
J. Opt. Soc. Am. B 24(6) 1423-1429 (2007)

Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber

Markus Hautakorpi, Maija Mattinen, and Hanne Ludvigsen
Opt. Express 16(12) 8427-8432 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription