Abstract

We present a theoretical scheme for laser cooling in Tm3+-doped oxy-fluoride glass ceramic (GC). Tm3+-doped GC has a unique combination of high chemical and mechanical stability related to the oxide glass and low phonon energy of the fluoride nanocrystals, which trap a majority of Tm3+ ions. This unique property of GC makes it attractive for a number of applications. The effective embedding of rare-earth ions in the crystalline phase with low phonon energy provides high quantum efficiency for the F43H63 transition in the Tm3+ ions participating in the cooling cycle.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Babu, K. H. Jang, Ch. S. Rao, L. Shi, C. K. Jayasankar, V. Lavin, and H. J. Seo, “White light generation in Dy3+-doped oxyfluoride glass and transparent glass-ceramics containing CaF2 nanocrystals,” Opt. Express 18, 340–347 (2010).
    [CrossRef]
  2. W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2:Ho3+, Tm3+ nanocrystals,” Opt. Express 17, 20952–20958(2009).
    [CrossRef]
  3. M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).
    [CrossRef]
  4. R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
    [CrossRef]
  5. P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenzund temperature-strahlung,” Z. Phys. 57, 739–746 (1929).
    [CrossRef]
  6. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
    [CrossRef]
  7. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
  8. K. Hirao, K. Tanaka, M. Makita, and N. Soga, “Preparation and optical properties of transparent glass-ceramic containing β-PbF2:Tm3+,” J. Appl. Phys. 78, 3445–3450(1995).
    [CrossRef]
  9. Y. Wang and J. Ohwaki, “New transparent vitroceramics doped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
    [CrossRef]
  10. D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
    [CrossRef]
  11. X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89, 111919 (2006).
    [CrossRef]
  12. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26, 145–147 (2001).
    [CrossRef]
  13. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23, 639–641 (1998).
    [CrossRef]
  14. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999).
    [CrossRef]
  15. W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2:Ho3+, Tm3+ nanocrystals,” Opt. Express 17, 20952–20958(2009).
    [CrossRef]
  16. R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
    [CrossRef]

2010

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

P. Babu, K. H. Jang, Ch. S. Rao, L. Shi, C. K. Jayasankar, V. Lavin, and H. J. Seo, “White light generation in Dy3+-doped oxyfluoride glass and transparent glass-ceramics containing CaF2 nanocrystals,” Opt. Express 18, 340–347 (2010).
[CrossRef]

2009

2007

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

2006

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89, 111919 (2006).
[CrossRef]

2001

2000

R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

1999

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).
[CrossRef]

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999).
[CrossRef]

1998

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23, 639–641 (1998).
[CrossRef]

1995

K. Hirao, K. Tanaka, M. Makita, and N. Soga, “Preparation and optical properties of transparent glass-ceramic containing β-PbF2:Tm3+,” J. Appl. Phys. 78, 3445–3450(1995).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

1993

Y. Wang and J. Ohwaki, “New transparent vitroceramics doped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

1929

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenzund temperature-strahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Anderson, J. E.

R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

Auzel, F.

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).
[CrossRef]

Babu, P.

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

Borrelli, N. F.

B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26, 145–147 (2001).
[CrossRef]

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Chen, D.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Chen, Q. J.

Cornelius, L. K.

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

Di Lieto, A.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

Edwards, B. C.

R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Eisaman, M. D.

Epstein, R. I.

R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Fan, X.

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89, 111919 (2006).
[CrossRef]

Gosnell, T. R.

Hirao, K.

K. Hirao, K. Tanaka, M. Makita, and N. Soga, “Preparation and optical properties of transparent glass-ceramic containing β-PbF2:Tm3+,” J. Appl. Phys. 78, 3445–3450(1995).
[CrossRef]

Huang, P.

Jang, K. H.

Jayasankar, C. K.

Lavin, V.

Luo, X.

Makita, M.

K. Hirao, K. Tanaka, M. Makita, and N. Soga, “Preparation and optical properties of transparent glass-ceramic containing β-PbF2:Tm3+,” J. Appl. Phys. 78, 3445–3450(1995).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

Mortier, M.

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).
[CrossRef]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Ohwaki, J.

Y. Wang and J. Ohwaki, “New transparent vitroceramics doped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenzund temperature-strahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Qian, Q.

Qiao, X.

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89, 111919 (2006).
[CrossRef]

Qiu, J. R.

Quimby, R. S.

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

Rao, Ch. S.

Samson, B. N.

Seletskiy, D. V.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

Seo, H. J.

Sheik-Bahae, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

Shi, L.

Soga, N.

K. Hirao, K. Tanaka, M. Makita, and N. Soga, “Preparation and optical properties of transparent glass-ceramic containing β-PbF2:Tm3+,” J. Appl. Phys. 78, 3445–3450(1995).
[CrossRef]

Tanaka, K.

K. Hirao, K. Tanaka, M. Makita, and N. Soga, “Preparation and optical properties of transparent glass-ceramic containing β-PbF2:Tm3+,” J. Appl. Phys. 78, 3445–3450(1995).
[CrossRef]

Tick, P. A.

B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26, 145–147 (2001).
[CrossRef]

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

Tonelli, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

Wang, M.

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89, 111919 (2006).
[CrossRef]

Wang, Y.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Y. Wang and J. Ohwaki, “New transparent vitroceramics doped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

Wang, Y. S.

Yang, Z. M.

Yu, Y.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Zhang, Q. Y.

Zhang, W. J.

Appl. Phys. Lett.

Y. Wang and J. Ohwaki, “New transparent vitroceramics doped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63, 3268–3270 (1993).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89, 111919 (2006).
[CrossRef]

J. Appl. Phys.

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

K. Hirao, K. Tanaka, M. Makita, and N. Soga, “Preparation and optical properties of transparent glass-ceramic containing β-PbF2:Tm3+,” J. Appl. Phys. 78, 3445–3450(1995).
[CrossRef]

J. Non-Cryst. Solids

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).
[CrossRef]

Nat. Photonics

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).

Nature

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

Z. Phys.

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenzund temperature-strahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Tm 3 + doped oxy-fluoride GC.

Fig. 2.
Fig. 2.

Energy manifold diagram of Tm 3 + : ZBLAN .

Fig. 3.
Fig. 3.

Absorption (solid curve) and emission cross sections (dashed curve) corresponding to the H 6 3 - F 4 3 transition of Tm 3 + ions doped in a GC sample.

Fig. 4.
Fig. 4.

Temperature of the sample with the volume fraction on the nanocrystal phase Q GC = 22 , 25, and 30% as a function of the pump power. The percentages of all Tm 3 + ions trapped in nanocrystals phase are (a)  Q RE = 100 % and (b)  Q RE = 95 % .

Fig. 5.
Fig. 5.

Temperature of the sample with the percentage of all Tm 3 + ions trapped in nanocrystal phase Q RE = 93 , 95%, and 97% as a function of the pump power. The volume fraction of the nanocrystal phase Q GC = 30 % .

Fig. 6.
Fig. 6.

Relation P heat / P cool between the heat power generated in the oxide glass host, P heat , and the cool power generated in nanocrystals, P cool , for the samples with the percentage of all Tm 3 + ions trapped in nanocrystal phase Q RE = 93 % , 95%, and 99% as a function of the pump power. The volume fraction of the nanocrystal phase Q GC = 30 % .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N ex d t = P p λ p A eff h c [ N g σ a ( λ p ) N ex σ e ( λ p ) ] N ex τ r N ex τ nr ,
N T = N g + N ex ,
P cool = A eff L [ P p A eff ( N g σ a ( λ p ) N ex σ e ( λ p ) ) + h c τ r λ F N ex h c τ nr λ F N ex ] ,
P cool = V cool N T σ a ( λ p ) I s ( λ p λ F ( 2 η QE 1 ) 1 ) ( 1 + σ e ( λ p ) σ a ( λ p ) ) η QE + A eff I s P p ,
P load = 2 π R L ε σ B ( T r 4 T s 4 ) ,
P heat = V N T ( 1 Q RE ) Q GC Q RE σ a G ( λ p ) I s G ( λ p λ F G ( 2 η QE G 1 ) 1 ) ( 1 + σ e G ( λ p ) σ a G ( λ p ) ) η QE G + A eff I s G P p ,

Metrics