Abstract

A novel path to achieving self-similar pulses in an all-normal-dispersion solid-state laser resonator is presented and numerically examined. The spatially asymptotic self-similar solution to the nonlinear Schrödinger equation with gain is approached over many cavity round trips and the resultant steady-state solution, stabilized with a saturable absorber possessing a nearly rectangular power response profile, displays minimal spectral, temporal, and amplitude breathing. This method simplifies cavity construction and allows for a more than thirtyfold increase in pulse energy when compared to dispersion-managed soliton mode-locking schemes. A path to directly generable microJoule femtosecond pulses is identified.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60 fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef]
  2. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [CrossRef]
  3. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
    [CrossRef]
  4. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [CrossRef]
  5. F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [CrossRef]
  6. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993).
    [CrossRef]
  7. F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), p. MD8.
  8. B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
    [CrossRef]
  9. A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20, 14213–14220 (2012).
    [CrossRef]
  10. B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010).
    [CrossRef]
  11. C. Antonelli, J. Chen, and F. X. Kartner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919–5924 (2007).
    [CrossRef]
  12. F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004).
    [CrossRef]
  13. W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser,” Opt. Express 19, 22496–22501 (2011).
    [CrossRef]
  14. C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).
    [CrossRef]
  15. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
    [CrossRef]
  16. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).
    [CrossRef]
  17. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Dispersion compensation schemes for femtosecond Kerr-lens mode-locked Cr:ZnSe lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2011), p. AMB1.
  18. E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in The European Conference on Lasers and Electro-Optics (CLEO Europe) 2009 and the European Quantum Electronics Conference , 14–19 June, 2009 (Optical Society of America, 2009), paper CF1_3.
  19. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
    [CrossRef]

2012 (1)

2011 (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser,” Opt. Express 19, 22496–22501 (2011).
[CrossRef]

C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).
[CrossRef]

2010 (4)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).
[CrossRef]

2009 (1)

2008 (1)

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

2007 (1)

2004 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef]

1999 (1)

1993 (1)

1991 (2)

Anderson, D.

Angelow, G.

Antonelli, C.

Bale, B. G.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), p. MD8.

Cankaya, H.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Dispersion compensation schemes for femtosecond Kerr-lens mode-locked Cr:ZnSe lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2011), p. AMB1.

Chen, J.

Chen, Y.

Cho, S. H.

Chong, A.

Cizmeciyan, M. N.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Dispersion compensation schemes for femtosecond Kerr-lens mode-locked Cr:ZnSe lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2011), p. AMB1.

Dantus, M.

Desaix, M.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef]

Fujimoto, J. G.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef]

Haus, H. A.

Ilday, F.

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004).
[CrossRef]

Ilday, F. O.

C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).
[CrossRef]

F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), p. MD8.

Ippen, E. P.

Jirauschek, C.

C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).
[CrossRef]

Kaertner, F.

Karlsson, M.

Kartner, F. X.

Kärtner, F. X.

Kean, P. N.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef]

Kurt, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Dispersion compensation schemes for femtosecond Kerr-lens mode-locked Cr:ZnSe lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2011), p. AMB1.

Lisak, M.

Liu, H.

Morgner, U.

Nie, B.

Oktem, B.

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Quiroga-Teixeiro, M. L.

Renninger, W.

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

Renninger, W. H.

Scheuer, V.

Sennaroglu, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
[CrossRef]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Dispersion compensation schemes for femtosecond Kerr-lens mode-locked Cr:ZnSe lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2011), p. AMB1.

Sibbett, W.

Sorokin, E.

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in The European Conference on Lasers and Electro-Optics (CLEO Europe) 2009 and the European Quantum Electronics Conference , 14–19 June, 2009 (Optical Society of America, 2009), paper CF1_3.

Sorokina, I. T.

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in The European Conference on Lasers and Electro-Optics (CLEO Europe) 2009 and the European Quantum Electronics Conference , 14–19 June, 2009 (Optical Society of America, 2009), paper CF1_3.

Spence, D. E.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef]

Tschudi, T.

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Wabnitz, S.

Wise, F.

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004).
[CrossRef]

Wise, F. W.

J. Opt. Soc. Am. B (3)

Laser Photon. Rev. (1)

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

Nat. Photonics (1)

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (2)

C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef]

Other (3)

F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), p. MD8.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Dispersion compensation schemes for femtosecond Kerr-lens mode-locked Cr:ZnSe lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2011), p. AMB1.

E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in The European Conference on Lasers and Electro-Optics (CLEO Europe) 2009 and the European Quantum Electronics Conference , 14–19 June, 2009 (Optical Society of America, 2009), paper CF1_3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the laser. Gain, gain medium with finite bandwidth; SPM, self-phase modulation; GVD, normal group velocity dispersion; SA, saturable absorber; OC, output coupler.

Fig. 2.
Fig. 2.

FWHM temporal (dashed-dotted red) and spectral (solid blue) widths are shown as the pulse evolves to the steady state over many cavity round trips.

Fig. 3.
Fig. 3.

Steady-state RMS temporal (red) and spectral (blue) widths of the self-similar pulse are shown during one cavity round trip where the pulse passes through both the saturable absorber and gain medium. SA, saturable absorber; gain, gain medium.

Fig. 4.
Fig. 4.

M parameter of a self-similar pulse as it evolves to the steady state from noise (main figure) and a snapshot of its evolution as it reaches a steady-state pulse shape (inset figure).

Fig. 5.
Fig. 5.

M parameter of the converged self-similar pulse during one cavity round trip as the pulse passes through the saturable absorber and gain medium. SA, saturable absorber; gain, gain medium.

Fig. 6.
Fig. 6.

Left: temporal profile of the simulated pulse. Simulated pulse (dashed-dotted red line); parabolic pulse (solid black line); sech 2 pulse (dashed black line). Right: spectrum of the simulated pulse.

Fig. 7.
Fig. 7.

Top: Δ M is calculated as a function of the saturable absorber strength α . The solid red line represents Δ M within the gain medium, while the dashed-dotted blue line represents the Δ M within the saturable absorber. Bottom: The M parameter is calculated as a function of different α values. q 0 is 7% and the output coupling l is 2%.

Fig. 8.
Fig. 8.

M parameter is calculated as a function of the reflectivity of various output couplers. The power response profile, controlled in part by the magnitude of the value ( P sat / P peak ) × 100 , was fixed to a value of 1.75 ± 0.16 % for each data point by adjusting the unsaturated gain. q 0 was 5% and P sat was 0.8 kW.

Tables (2)

Tables Icon

Table 1. Pulse Dynamics With and Without Gain Filtering

Tables Icon

Table 2. Pulse Profile Comparison

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M 2 = [ | A ( t ) | 2 | P ( t ) | 2 ] 2 d t [ | A ( t ) | 4 ] d t .
A ( z , t ) z = [ g 0 ( z ) 1 + E p E sat ( 1 + 1 ω c 2 2 t 2 ) j 2 β ( z ) 2 t 2 + j γ ( z ) | A ( z , t ) | 2 q 0 ( z ) 1 + | A ( z , t ) | 2 P sat l ( z ) ] A ( z , t ) .

Metrics