Abstract

To develop a thin and flexible hollow waveguide for terahertz (THz) waves that can be applied to endoscopic applications, a new (to our knowledge) fabrication method is proposed in which thin polymer tubing is first drawn and then a silver layer is formed on the outside of the tubing. By using this method, a thick dielectric layer, which was difficult to form by liquid-phase deposition, is easily obtained with high accuracy in the thickness. A transmission loss at 1.5 THz measured by a Fourier transform IR spectrometer was 3.0 dB for a 50 cm long, 1 mm inner-diameter waveguide. It is shown that the transmission losses are not affected by the bending of the waveguide when the bending radius is larger than around 10 cm.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy

Yuji Matsuura and Eriko Takeda
J. Opt. Soc. Am. B 25(12) 1949-1954 (2008)

Characterization of bending loss in hollow flexible terahertz waveguides

Pallavi Doradla, Cecil S. Joseph, Jayant Kumar, and Robert H. Giles
Opt. Express 20(17) 19176-19184 (2012)

Optical properties of small-bore hollow glass waveguides

Yuji Matsuura, Todd Abel, and James. A. Harrington
Appl. Opt. 34(30) 6842-6847 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription