Abstract

The photorefractive effect and the corresponding optical damage thresholds of novel LiNbO3 waveguides fabricated by swift ion irradiation have been investigated. TE- and TM-mode operation have been characterized, and the influence of the beam propagation length analyzed. Optical damage levels similar to those of proton-exchanged waveguides have been found. In order to reduce optical damage, the influence of temperature has been investigated. An increase of more than a factor of 100 in the optical damage threshold has been obtained by moderate heating up to 90°C. The results are briefly discussed under the two-center model for the photorefractive effect in undoped LiNbO3, and compared with data from other types of LiNbO3 waveguides.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
    [CrossRef]
  2. D. Kip and M. Wesner, “Photrefractive waveguides,” in Photorefractive Materials and Their Applications I, P. Gunter and J. P. Huignard, eds. (Springer, 2006), pp. 289–316.
  3. T. Volk, M. Wolecke, and N. Rubinina, “Optical damage resistance in lithium niobate,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer, 2007), pp. 165–203.
  4. S. M. Kostritskii, “Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window,” Appl. Phys. B 95, 421–428, (2009).
    [CrossRef]
  5. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009).
    [CrossRef]
  6. F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 2006), pp. 43–77.
  7. J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1973–1987 (2011).
    [CrossRef]
  8. A. Yamada, H. Tamada, and M. Saltoh, “Photorefractive damage in LiNbO3 thin-film optical waveguides grown by liquid phase epitaxy,” J. Appl. Phys. 76, 1776–1783 (1994).
    [CrossRef]
  9. O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
    [CrossRef]
  10. F. Cheng, “Photonic guiding structures in LiNbO3 crystals produced by energetic ion beam,” J. Appl. Phys. 106, 081101 (2009).
    [CrossRef]
  11. J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004).
    [CrossRef]
  12. M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008).
    [CrossRef]
  13. J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
    [CrossRef]
  14. E. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  15. H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
    [CrossRef]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
    [CrossRef]
  17. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  18. J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
    [CrossRef]
  19. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
    [CrossRef]
  20. M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
    [CrossRef]
  21. J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
    [CrossRef]
  22. http://www.cmam.uam.es .
  23. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides. a simple method,” Appl. Opt. 22, 3892–3894 (1983).
    [CrossRef]
  24. F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17, 658–665 (2009).
    [CrossRef]
  25. O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
    [CrossRef]
  26. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  27. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorrefraction,” Appl. Phys. Lett. 66, 280–282 (1995).
    [CrossRef]
  28. J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
    [CrossRef]
  29. J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
    [CrossRef]
  30. A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
    [CrossRef]
  31. B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
    [CrossRef]
  32. L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
    [CrossRef]
  33. O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
    [CrossRef]
  34. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–283 (1985).
    [CrossRef]
  35. J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008).
    [CrossRef]
  36. A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
    [CrossRef]

2012 (1)

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

2011 (1)

2010 (2)

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

2009 (5)

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17, 658–665 (2009).
[CrossRef]

S. M. Kostritskii, “Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window,” Appl. Phys. B 95, 421–428, (2009).
[CrossRef]

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009).
[CrossRef]

F. Cheng, “Photonic guiding structures in LiNbO3 crystals produced by energetic ion beam,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

2008 (2)

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008).
[CrossRef]

2007 (3)

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

2006 (2)

O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
[CrossRef]

B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
[CrossRef]

2005 (5)

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[CrossRef]

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

2004 (2)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004).
[CrossRef]

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

2001 (1)

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

2000 (1)

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

1995 (1)

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorrefraction,” Appl. Phys. Lett. 66, 280–282 (1995).
[CrossRef]

1994 (1)

A. Yamada, H. Tamada, and M. Saltoh, “Photorefractive damage in LiNbO3 thin-film optical waveguides grown by liquid phase epitaxy,” J. Appl. Phys. 76, 1776–1783 (1994).
[CrossRef]

1993 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–283 (1985).
[CrossRef]

1983 (1)

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Agullo-López, F.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 2006), pp. 43–77.

Agulló-Rueda, F.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

Alcazar, A.

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

Alcázar, A.

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
[CrossRef]

Alcazar-de-Velasco, A.

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Buse, K.

Caballero, O.

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004).
[CrossRef]

Caballero-Calero, O.

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
[CrossRef]

Cabrera, J. M.

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008).
[CrossRef]

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
[CrossRef]

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004).
[CrossRef]

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Calvo, G. F.

F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 2006), pp. 43–77.

Carnicero, J.

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008).
[CrossRef]

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004).
[CrossRef]

Carrascosa, M.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17, 658–665 (2009).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
[CrossRef]

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004).
[CrossRef]

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 2006), pp. 43–77.

Chen, B.

B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
[CrossRef]

Chen, F.

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

Cheng, F.

F. Cheng, “Photonic guiding structures in LiNbO3 crystals produced by energetic ion beam,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Correa, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Crespillo, M.

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

de la Paliza, G.

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

Della Corte, F. G.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[CrossRef]

Domenech, M.

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Falk, M.

Fejer, M. M.

Fonseca-Campos, J.

B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
[CrossRef]

Fujii, Y.

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

García, G.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Cabañes, A.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17, 658–665 (2009).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008).
[CrossRef]

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

Garcia-Navarro, A.

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–283 (1985).
[CrossRef]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Haertle, D.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009).
[CrossRef]

Herrero, J.

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

Hu, H.

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

Ikeda, A.

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

Iodice, M.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[CrossRef]

Jermann, E.

Jubera, M.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

Jundt, D. H.

Kip, D.

D. Kip and M. Wesner, “Photrefractive waveguides,” in Photorefractive Materials and Their Applications I, P. Gunter and J. P. Huignard, eds. (Springer, 2006), pp. 289–316.

Kong, Y.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorrefraction,” Appl. Phys. Lett. 66, 280–282 (1995).
[CrossRef]

Kösters, M.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii, “Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window,” Appl. Phys. B 95, 421–428, (2009).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Liang, W.

B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
[CrossRef]

Lifante, G.

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

Lu, F.

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

Ludtke, F.

Luedtke, F.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Méndez, A.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

Moretti, L.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[CrossRef]

Nakayama, K.

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Oi, T.

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

Okamura, Y.

Olivares, J.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Ong, C.

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

Otsuka, Y.

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

Otten, J.

Phillips, C. R.

Ramiro, B.

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

Ramiro, J. B.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

Rams, J.

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Rendira, I.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[CrossRef]

Rubinina, N.

T. Volk, M. Wolecke, and N. Rubinina, “Optical damage resistance in lithium niobate,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer, 2007), pp. 165–203.

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Saltoh, M.

A. Yamada, H. Tamada, and M. Saltoh, “Photorefractive damage in LiNbO3 thin-film optical waveguides grown by liquid phase epitaxy,” J. Appl. Phys. 76, 1776–1783 (1994).
[CrossRef]

Schwesyg, J. R.

Shen, D.

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

Shi, B.

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Sturman, B.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009).
[CrossRef]

Tamada, H.

A. Yamada, H. Tamada, and M. Saltoh, “Photorefractive damage in LiNbO3 thin-film optical waveguides grown by liquid phase epitaxy,” J. Appl. Phys. 76, 1776–1783 (1994).
[CrossRef]

Villarroel, J.

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17, 658–665 (2009).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008).
[CrossRef]

Volk, T.

T. Volk, M. Wolecke, and N. Rubinina, “Optical damage resistance in lithium niobate,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer, 2007), pp. 165–203.

Wang, H.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorrefraction,” Appl. Phys. Lett. 66, 280–282 (1995).
[CrossRef]

Wang, K.

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

Wang, Y.

B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–283 (1985).
[CrossRef]

Wen, J.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorrefraction,” Appl. Phys. Lett. 66, 280–282 (1995).
[CrossRef]

Werheit, P.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009).
[CrossRef]

Wesner, M.

D. Kip and M. Wesner, “Photrefractive waveguides,” in Photorefractive Materials and Their Applications I, P. Gunter and J. P. Huignard, eds. (Springer, 2006), pp. 289–316.

Wolecke, M.

T. Volk, M. Wolecke, and N. Rubinina, “Optical damage resistance in lithium niobate,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer, 2007), pp. 165–203.

Xu, C. Q.

B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
[CrossRef]

Yamada, A.

A. Yamada, H. Tamada, and M. Saltoh, “Photorefractive damage in LiNbO3 thin-film optical waveguides grown by liquid phase epitaxy,” J. Appl. Phys. 76, 1776–1783 (1994).
[CrossRef]

Yamamoto, S.

Yoshinaka, S.

Appl. Opt. (1)

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–283 (1985).
[CrossRef]

Appl. Phys. B (4)

S. M. Kostritskii, “Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window,” Appl. Phys. B 95, 421–428, (2009).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004).
[CrossRef]

M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012).
[CrossRef]

J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorrefraction,” Appl. Phys. Lett. 66, 280–282 (1995).
[CrossRef]

J. Appl. Phys. (8)

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007).
[CrossRef]

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

A. Yamada, H. Tamada, and M. Saltoh, “Photorefractive damage in LiNbO3 thin-film optical waveguides grown by liquid phase epitaxy,” J. Appl. Phys. 76, 1776–1783 (1994).
[CrossRef]

O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006).
[CrossRef]

F. Cheng, “Photonic guiding structures in LiNbO3 crystals produced by energetic ion beam,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

J. Opt. A (1)

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005).
[CrossRef]

Nat. Photonics (1)

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009).
[CrossRef]

Nucl. Instrum. Methods B (1)

J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007).
[CrossRef]

Opt. Commun. (1)

J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Opt. Express (3)

Opt. Mater. (1)

J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010).
[CrossRef]

Phys. Stat. Sol. A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004).
[CrossRef]

Proc. SPIE (1)

O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005).
[CrossRef]

Other (4)

D. Kip and M. Wesner, “Photrefractive waveguides,” in Photorefractive Materials and Their Applications I, P. Gunter and J. P. Huignard, eds. (Springer, 2006), pp. 289–316.

T. Volk, M. Wolecke, and N. Rubinina, “Optical damage resistance in lithium niobate,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer, 2007), pp. 165–203.

F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 2006), pp. 43–77.

http://www.cmam.uam.es .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of the interferometric setup to measure photorefractive index changes, (b) single beam setup to determine light IDTs. P, polarizer; M, mirror; BS, beam splitter; MO, microscope objective; D, diaphragm; L, lens.

Fig. 2.
Fig. 2.

Logarithmic plot of the absolute value of the photorefractive index change | Δ n e | (circles) and | Δ n o | (triangles) versus the incoupled light intensity I in inside the waveguide. (The curves are only guides to the eye.)

Fig. 3.
Fig. 3.

Logarithmic plot of the output intensity I out versus input intensity I in inside the waveguide for TE (squares) and TM (circles) propagating fundamental modes.

Fig. 4.
Fig. 4.

Logarithmic plot of the output intensity I out versus input intensity I in inside the waveguide for three different propagation lengths: (a) ordinary polarization (TE), (b) extraordinary polarization (TM).

Fig. 5.
Fig. 5.

Output beam spot images at increasing intensities for the fundamental TM mode and a propagation length l = 8 mm . The vertical direction is parallel to the guide plane and perpendicular to the propagation direction.

Fig. 6.
Fig. 6.

(a) Logarithmic plot of the output intensity I out versus input intensity I in inside the waveguide for TM polarization and for four different temperatures in the range 25°C–90°C ( l = 8 mm ), (b) corresponding output beam spot images at increasing temperatures. The vertical direction is parallel to the guide plane and perpendicular to the propagation direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 1 2 n 3 r E ,

Metrics