Abstract

In this paper, we theoretically demonstrate that carrier recovery can be accelerated through the tunneling effect in a novel (to our knowledge) quantum well (QW) semiconductor optical amplifier. In the active region, we design the repeated element, including a shallow QW and a following deep QW. Through numerical calculation, we find this novel structure is helpful for improving the dynamic characteristics. In the single element, the shallow QW acts as a perfect carrier reservoir, while the deep QW acts as a “real” active region. Gain recovery time is shortened significantly.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
    [CrossRef]
  2. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
    [CrossRef]
  3. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
    [CrossRef]
  4. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
    [CrossRef]
  5. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19, 889–991 (1994).
    [CrossRef]
  6. X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
    [CrossRef]
  7. CIP Technologies, “Semiconductor optical amplifier application notes—telecoms,” http://www.ciphotonics.com/download/application-note/soa-application-notes-telecoms.pdf (2011).
  8. C. Qin, X. Huang, and X. L. Zhang, “Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 1443–1450 (2011).
    [CrossRef]
  9. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
    [CrossRef]
  10. J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Elsevier Science, 2003).
  11. C. C. Sh and C. S. Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995).
    [CrossRef]
  12. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  13. T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well,” IEEE J. Quantum Electron. 30, 562–570 (1994).
    [CrossRef]
  14. D. Dragoman, “Tunneling time asymmetry in semiconductor heterostructures,” IEEE J. Quantum Electron. 35, 1887–1893 (1999).
    [CrossRef]
  15. V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
    [CrossRef]
  16. V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
    [CrossRef]
  17. A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
    [CrossRef]
  18. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006).
    [CrossRef]
  19. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
    [CrossRef]

2011 (2)

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
[CrossRef]

C. Qin, X. Huang, and X. L. Zhang, “Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 1443–1450 (2011).
[CrossRef]

2007 (1)

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

2006 (4)

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
[CrossRef]

2005 (1)

V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
[CrossRef]

1999 (3)

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

D. Dragoman, “Tunneling time asymmetry in semiconductor heterostructures,” IEEE J. Quantum Electron. 35, 1887–1893 (1999).
[CrossRef]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

1995 (1)

C. C. Sh and C. S. Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995).
[CrossRef]

1994 (2)

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well,” IEEE J. Quantum Electron. 30, 562–570 (1994).
[CrossRef]

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19, 889–991 (1994).
[CrossRef]

1992 (1)

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

Bennion, I.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Bhardwaj, A.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Bowers, J. E.

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well,” IEEE J. Quantum Electron. 30, 562–570 (1994).
[CrossRef]

Cabot, S.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Cacciatore, A.

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

Campi, D.

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

Chuang, S. L.

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Davies, D. A. O.

de Waardt, H.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Di Carlo, A.

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

Dorren, H. J. S.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

Dragoman, D.

D. Dragoman, “Tunneling time asymmetry in semiconductor heterostructures,” IEEE J. Quantum Electron. 35, 1887–1893 (1999).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Fornuto, G.

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

Huang, X.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
[CrossRef]

C. Qin, X. Huang, and X. L. Zhang, “Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 1443–1450 (2011).
[CrossRef]

Ishikawa, T.

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well,” IEEE J. Quantum Electron. 30, 562–570 (1994).
[CrossRef]

Jaques, J.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Kang, I.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Katayama, T.

V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
[CrossRef]

Kawaguchi, H.

V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Khoe, G. D.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

Koonen, A. M. J.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Lee, Y. T.

V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
[CrossRef]

Li, Z.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

Lien, C. S.

C. C. Sh and C. S. Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995).
[CrossRef]

Liu, Y.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

Lugli, P.

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

Lysak, V. V.

V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
[CrossRef]

V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
[CrossRef]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19, 889–991 (1994).
[CrossRef]

Mark, J.

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Mørk, J.

Neilson, D. T.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Nesset, N.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Nielsen, M. L.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Piprek, J.

J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Elsevier Science, 2003).

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Qin, C.

C. Qin, X. Huang, and X. L. Zhang, “Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 1443–1450 (2011).
[CrossRef]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
[CrossRef]

Reale, A.

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Safonov, I. M.

V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
[CrossRef]

Sakaguchi, J.

Sauer, N.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Sh, C. C.

C. C. Sh and C. S. Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995).
[CrossRef]

Shu, X.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Shulika, A. V.

V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
[CrossRef]

Shulika, O. V.

V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
[CrossRef]

Stano, A.

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Sukhoivanov, I. A.

V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
[CrossRef]

V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
[CrossRef]

Suzuki, R.

Tangdiongga, E.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

Ueno, Y.

Waardt, H. d.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

Yu, Y.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
[CrossRef]

Zhang, L.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Zhang, S.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

Zhang, X. L.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
[CrossRef]

C. Qin, X. Huang, and X. L. Zhang, “Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 1443–1450 (2011).
[CrossRef]

Zhang, Z.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

IEEE J. Lightwave Technol. (3)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006).
[CrossRef]

IEEE J. Quantum Electron. (6)

V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005).
[CrossRef]

A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999).
[CrossRef]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011).
[CrossRef]

C. Qin, X. Huang, and X. L. Zhang, “Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 1443–1450 (2011).
[CrossRef]

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well,” IEEE J. Quantum Electron. 30, 562–570 (1994).
[CrossRef]

D. Dragoman, “Tunneling time asymmetry in semiconductor heterostructures,” IEEE J. Quantum Electron. 35, 1887–1893 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. C. Sh and C. S. Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Other (3)

J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Elsevier Science, 2003).

CIP Technologies, “Semiconductor optical amplifier application notes—telecoms,” http://www.ciphotonics.com/download/application-note/soa-application-notes-telecoms.pdf (2011).

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic structure of the AQW SOA with two QWs as a continuum. Important carrier redistribution mechanisms are indicated. (a) Captured by QW 1 (τesp), (b) captured by QW 2, (c) escaped from QW 1, (d) escaped from QW 2, (e) tunneled from QW 1 to QW 2 (τtun), (f) tunneled from QW 2 to QW 1.

Fig. 2.
Fig. 2.

Spatial distribution of (a) electrons in the conduction and (b) holes in the valence band. Black curves: spatial distributions with different SBs; blue curves: energy profiles.

Fig. 3.
Fig. 3.

Wave functions of the second subband in the conduction band as a function of Ga mole fraction (In1xGaxAs). E11, E21, and E31 are the corresponding eigenenergies with different QW depths.

Fig. 4.
Fig. 4.

Wave functions of the second subband in the conduction band as a function of barrier width (L).

Fig. 5.
Fig. 5.

Tunneling coefficient as a function of tunneling barrier width between the shallow QW and the deep QW.

Fig. 6.
Fig. 6.

Gain recovery process with different tunneling barrier thicknesses.

Fig. 7.
Fig. 7.

(a) Wavelength conversion at 80Gb/s: (a1) the converted signal from the AQW SOA and (a2) the converted signal from the normal QW SOA. (b) Wavelength conversion at 160Gb/s: (b1) the converted signal from the AQW SOA and (b2) the converted signal from the normal QW SOA.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

g(ω,N,T)=q2πnrcε0m02ωLzη=,ς=U,Ln,m|e^·Mn,mησ(kt)|2·(fnc(kt,N,T)fmv(kt,N,T))γ/π(Eσ,nmcv(kt)ω)2+γ2ktdkt2π,
fnc(kt,N,Tc)=11+exp(Enc(kt)Efc(N,Tc)KTc),
fvm(k,N,Tv)=11+exp(Emv(k)Efv(N,Tv)KTv),
Eσ,nmcv(kt)=Enc(kt)Eσ,mv(kt).
T˜i=|Si|2=4ki2κi2(ki2κi2)sinh2(kiκi)+4ki2κi2cosh2(κiLi),
ki=(2m0Eic)12/,
κi=[2m0(VbEic)]12/,
dNidt=ηiIeV+εiNiτtuniεi+1Ni+1τtuni+1ξiNi+1τespiRsponSstimu,
Rsponi=AωNωi+BωNωi2+CωNωi3,
dTidt=1Ui/Ti(dUidTiUiNidNidt)TiT0τ,
dUidt=j(ωjEgi)vggijSωi+jωjvggijαFCNiSωi.
(t+vgz)S(z,t)=vgS(z,t)i[Γgi(Ni,λ)αFCNiαi0],

Metrics