Abstract

Speed-dependent effects (SDEs) in both the absorption and dispersion modes of detection have been detected and scrutinized by the noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) technique. The present paper achieves four objectives: (i) it provides the first demonstration of SDEs detected in dispersion, (ii) it validates the expression for a speed-dependent Voigt (SDV) dispersion line-shape function that is derived in an accompanying paper, (iii) it illustrates the influence of SDEs on the NICE-OHMS technique, and (iv) it gives the first experimental comparison of SDEs for the absorption and dispersion modes of detection. Experiments were performed using an isolated transition in the v1+v3+v41-v41 band of acetylene [Pe(33) at 6439.371cm1] in the 100–250 Torr range at room temperature. It is shown that SDEs appear in both the absorption and dispersion modes of detection, that they can be well described by the suggested SDV dispersion line-shape function, and that they need to be taken into account if NICE-OHMS signals detected under optimal pressures are to be properly assessed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  2. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
    [CrossRef]
  3. P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
    [CrossRef]
  4. J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
    [CrossRef]
  5. M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984).
    [CrossRef]
  6. P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
    [CrossRef]
  7. R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
    [CrossRef]
  8. R. Ciurylo and J. Szudy, “Line-mixing and collision-time asymmetry of spectral line shapes,” Phys. Rev. A 63, 042714 (2001).
    [CrossRef]
  9. A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
    [CrossRef]
  10. P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
    [CrossRef]
  11. J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
    [CrossRef]
  12. D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).
  13. G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
    [CrossRef]
  14. R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
    [CrossRef]
  15. D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
    [CrossRef]
  16. A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
    [CrossRef]
  17. B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
    [CrossRef]
  18. D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
    [CrossRef]
  19. C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
    [CrossRef]
  20. G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
    [CrossRef]
  21. B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
    [CrossRef]
  22. F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
    [CrossRef]
  23. B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
    [CrossRef]
  24. B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
    [CrossRef]
  25. G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
    [CrossRef]
  26. C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
    [CrossRef]
  27. L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the v4+v5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
    [CrossRef]
  28. M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
    [CrossRef]
  29. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
    [CrossRef]
  30. A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
    [CrossRef]
  31. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
    [CrossRef]
  32. M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
    [CrossRef]
  33. A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
    [CrossRef]
  34. M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
    [CrossRef]
  35. The dispersive part of a speed-dependent response function (e.g., of Lorentzian or Voigt form) has occasionally been used to describe line asymmetry in absorption spectra [5]. However, to our knowledge, it has not previously been used to describe the response of spectroscopic techniques detecting dispersion.
  36. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef]
  37. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  38. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
    [CrossRef]
  39. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  40. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
    [CrossRef]
  41. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
    [CrossRef]
  42. A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
    [CrossRef]
  43. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
    [CrossRef]
  44. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude-modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [CrossRef]
  45. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007).
    [CrossRef]
  46. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS–improved detectability,” Opt. Express 15, 10822–10831 (2007).
    [CrossRef]
  47. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
    [CrossRef]
  48. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008).
    [CrossRef]
  49. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
    [CrossRef]
  50. A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
    [CrossRef]
  51. I. Silander, P. Ehlers, J. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012).
    [CrossRef]
  52. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
    [CrossRef]
  53. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996).
    [CrossRef]
  54. H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
    [CrossRef]
  55. T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
    [CrossRef]
  56. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
    [CrossRef]
  57. P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011).
    [CrossRef]
  58. J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
    [CrossRef]
  59. B. C. Chang and T. J. Sears, “High resolution near-infrared electronic spectroscopy of HCBr,” J. Chem. Phys. 105, 2135–2140 (1996).
    [CrossRef]
  60. M. L. Hause, G. E. Hall, and T. J. Sears, “Sub-Doppler laser absorption spectroscopy of the A2Πi−X2∑+ (1, 0) band of CN: measurement of the N14 hyperfine parameters in A2Π CN,” J. Mol. Spectrosc. 253, 122–128 (2009).
    [CrossRef]
  61. G. E. Hall, T. J. Sears, and H. G. Yu, “Rotationally resolved spectrum of the A~(060)−X~(000) band of HCBr,” J. Mol. Spectrosc. 235, 125–131 (2006).
    [CrossRef]
  62. Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006).
    [CrossRef]
  63. J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
    [CrossRef]
  64. B. C. Chang and T. J. Sears, “Frequency-modulation transient absorption-spectrum of the HCCl 1A′′(0,0,0)←X1A′(0,0,0) transition,” J. Chem. Phys. 102, 6347–6353 (1995).
    [CrossRef]
  65. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
    [CrossRef]
  66. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals,” J. Opt. Soc. Am. B 29, 2971–2979 (2012).
    [CrossRef]
  67. P. Ehlers, J. Wang, I. Silander, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12  cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
    [CrossRef]
  68. H. M. Pickett, “Effects of velocity averaging on the shapes of absorption lines,” J. Chem. Phys. 73, 6090–6094 (1980).
    [CrossRef]
  69. C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
    [CrossRef]
  70. F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003).
    [CrossRef]
  71. F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
    [CrossRef]
  72. C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
    [CrossRef]
  73. A. Foltynowicz, J. Y. Wang, P. Ehlers, and O. Axner, “Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime,” Opt. Express 18, 18580–18591 (2010).
    [CrossRef]
  74. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  75. R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
    [CrossRef]
  76. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner are preparing a manuscript to be called “Accuracy of the assessment of spectroscopic parameters by the NICE-OHMS technique.”

2012

2011

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
[CrossRef]

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011).
[CrossRef]

A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

2010

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
[CrossRef]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

A. Foltynowicz, J. Y. Wang, P. Ehlers, and O. Axner, “Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime,” Opt. Express 18, 18580–18591 (2010).
[CrossRef]

2009

M. L. Hause, G. E. Hall, and T. J. Sears, “Sub-Doppler laser absorption spectroscopy of the A2Πi−X2∑+ (1, 0) band of CN: measurement of the N14 hyperfine parameters in A2Π CN,” J. Mol. Spectrosc. 253, 122–128 (2009).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
[CrossRef]

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the v4+v5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

2008

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

2007

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS–improved detectability,” Opt. Express 15, 10822–10831 (2007).
[CrossRef]

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

2006

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

G. E. Hall, T. J. Sears, and H. G. Yu, “Rotationally resolved spectrum of the A~(060)−X~(000) band of HCBr,” J. Mol. Spectrosc. 235, 125–131 (2006).
[CrossRef]

Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006).
[CrossRef]

2003

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003).
[CrossRef]

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

2001

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

R. Ciurylo and J. Szudy, “Line-mixing and collision-time asymmetry of spectral line shapes,” Phys. Rev. A 63, 042714 (2001).
[CrossRef]

2000

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
[CrossRef]

1999

1998

1997

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

1996

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996).
[CrossRef]

B. C. Chang and T. J. Sears, “High resolution near-infrared electronic spectroscopy of HCBr,” J. Chem. Phys. 105, 2135–2140 (1996).
[CrossRef]

1995

B. C. Chang and T. J. Sears, “Frequency-modulation transient absorption-spectrum of the HCCl 1A′′(0,0,0)←X1A′(0,0,0) transition,” J. Chem. Phys. 102, 6347–6353 (1995).
[CrossRef]

1994

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

1987

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

1985

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude-modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
[CrossRef]

1984

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984).
[CrossRef]

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1981

D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).

1980

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

H. M. Pickett, “Effects of velocity averaging on the shapes of absorption lines,” J. Chem. Phys. 73, 6090–6094 (1980).
[CrossRef]

1975

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
[CrossRef]

1974

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

1972

P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
[CrossRef]

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

1953

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

1952

P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
[CrossRef]

Anderson, P. W.

P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
[CrossRef]

Axner, O.

I. Silander, P. Ehlers, J. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012).
[CrossRef]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals,” J. Opt. Soc. Am. B 29, 2971–2979 (2012).
[CrossRef]

P. Ehlers, J. Wang, I. Silander, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12  cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[CrossRef]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
[CrossRef]

A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[CrossRef]

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011).
[CrossRef]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

A. Foltynowicz, J. Y. Wang, P. Ehlers, and O. Axner, “Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime,” Opt. Express 18, 18580–18591 (2010).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS–improved detectability,” Opt. Express 15, 10822–10831 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007).
[CrossRef]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner are preparing a manuscript to be called “Accuracy of the assessment of spectroscopic parameters by the NICE-OHMS technique.”

Baylis, W. E.

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

Berman, P. R.

P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
[CrossRef]

Bernath, P. F.

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

Bielski, A.

A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
[CrossRef]

Bird, R. G.

Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006).
[CrossRef]

Bjorklund, G. C.

Blake, T. A.

Blanquet, G.

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Bloch, J. C.

J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

Boone, C. D.

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

Bouanich, J. P.

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003).
[CrossRef]

D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[CrossRef]

Brown, A. M.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Buldyreva, J.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

Casa, G.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Castrillo, A.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Chackerian, C.

Chang, B. C.

B. C. Chang and T. J. Sears, “High resolution near-infrared electronic spectroscopy of HCBr,” J. Chem. Phys. 105, 2135–2140 (1996).
[CrossRef]

B. C. Chang and T. J. Sears, “Frequency-modulation transient absorption-spectrum of the HCCl 1A′′(0,0,0)←X1A′(0,0,0) transition,” J. Chem. Phys. 102, 6347–6353 (1995).
[CrossRef]

Cich, M. J.

M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
[CrossRef]

Ciurylo, R.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
[CrossRef]

R. Ciurylo and J. Szudy, “Line-mixing and collision-time asymmetry of spectral line shapes,” Phys. Rev. A 63, 042714 (2001).
[CrossRef]

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

Claveau, C.

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

Colmont, J. M.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003).
[CrossRef]

D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
[CrossRef]

Cooper, J.

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

Corey, G. C.

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

Curl, R. F.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Cygan, A.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

De Vizia, M. D.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[CrossRef]

Dhyne, M.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the v4+v5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

Dion, C. M.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

Domyslawska, J.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Dube, P.

Dufour, G.

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Ehlers, P.

Fasci, E.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Field, R. W.

J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

Fissiaux, L.

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the v4+v5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

Foltynowicz, A.

A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[CrossRef]

A. Foltynowicz, J. Y. Wang, P. Ehlers, and O. Axner, “Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime,” Opt. Express 18, 18580–18591 (2010).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS–improved detectability,” Opt. Express 15, 10822–10831 (2007).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fritsch, T.

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

Frueholz, R. P.

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

Ganser, H.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Gehrtz, M.

Gianfrani, L.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Hall, G. E.

M. L. Hause, G. E. Hall, and T. J. Sears, “Sub-Doppler laser absorption spectroscopy of the A2Πi−X2∑+ (1, 0) band of CN: measurement of the N14 hyperfine parameters in A2Π CN,” J. Mol. Spectrosc. 253, 122–128 (2009).
[CrossRef]

G. E. Hall, T. J. Sears, and H. G. Yu, “Rotationally resolved spectrum of the A~(060)−X~(000) band of HCBr,” J. Mol. Spectrosc. 235, 125–131 (2006).
[CrossRef]

J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

Hall, J. L.

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Halmer, D.

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

Harris, M.

M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984).
[CrossRef]

Hause, M. L.

M. L. Hause, G. E. Hall, and T. J. Sears, “Sub-Doppler laser absorption spectroscopy of the A2Πi−X2∑+ (1, 0) band of CN: measurement of the N14 hyperfine parameters in A2Π CN,” J. Mol. Spectrosc. 253, 122–128 (2009).
[CrossRef]

Henry, A.

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Hering, P.

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

Hodges, J. T.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

Horstjann, M.

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hurtmans, D.

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
[CrossRef]

Joubert, P.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

Kaldor, A.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Kluczynski, P.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011).
[CrossRef]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lance, B.

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Lathdavong, L.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Lepere, M.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the v4+v5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Lewicki, R.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef]

Lewis, E. L.

M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984).
[CrossRef]

Lisak, D.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Lock, T.

Lopez, G. V.

M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
[CrossRef]

Lundqvist, S.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011).
[CrossRef]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

Ma, L. S.

Ma, W.

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS–improved detectability,” Opt. Express 15, 10822–10831 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007).
[CrossRef]

Mader, H.

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

Maki, A. G.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Mantz, A. W.

M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
[CrossRef]

Margottin-Maclou, M.

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Martin, B.

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

McCourt, F. R.

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

McHugh, D.

M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984).
[CrossRef]

McMahon, D. R. A.

D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).

McRaven, C. P.

M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
[CrossRef]

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Moretti, L.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Murtz, M.

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

Nguyen, L.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

Nicolaisen, H. W.

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

Oka, T.

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

Olson, W. B.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Pickett, H. M.

H. M. Pickett, “Effects of velocity averaging on the shapes of absorption lines,” J. Chem. Phys. 73, 6090–6094 (1980).
[CrossRef]

Pine, A. S.

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

Podolske, J. R.

Pollock, C. R.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Populaire, J. C.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

Priem, D.

D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
[CrossRef]

Rao, D. R.

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

Rohart, F.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003).
[CrossRef]

D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
[CrossRef]

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

Rosenkranz, P.

P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
[CrossRef]

Sabana,

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

Schmidt, F. M.

Sears, T. J.

M. L. Hause, G. E. Hall, and T. J. Sears, “Sub-Doppler laser absorption spectroscopy of the A2Πi−X2∑+ (1, 0) band of CN: measurement of the N14 hyperfine parameters in A2Π CN,” J. Mol. Spectrosc. 253, 122–128 (2009).
[CrossRef]

G. E. Hall, T. J. Sears, and H. G. Yu, “Rotationally resolved spectrum of the A~(060)−X~(000) band of HCBr,” J. Mol. Spectrosc. 235, 125–131 (2006).
[CrossRef]

Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006).
[CrossRef]

B. C. Chang and T. J. Sears, “High resolution near-infrared electronic spectroscopy of HCBr,” J. Chem. Phys. 105, 2135–2140 (1996).
[CrossRef]

B. C. Chang and T. J. Sears, “Frequency-modulation transient absorption-spectrum of the HCCl 1A′′(0,0,0)←X1A′(0,0,0) transition,” J. Chem. Phys. 102, 6347–6353 (1995).
[CrossRef]

J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
[CrossRef]

Shannon, I.

M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984).
[CrossRef]

Shao, J.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

Silander, I.

Smith, E. W.

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

Szudy, J.

R. Ciurylo and J. Szudy, “Line-mixing and collision-time asymmetry of spectral line shapes,” Phys. Rev. A 63, 042714 (2001).
[CrossRef]

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

Tittel, F. K.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Trawinski, R. S.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
[CrossRef]

Urban, W.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

Urbanowicz, A.

A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
[CrossRef]

Valentin, A.

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Volk, C. H.

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

Walker, K. A.

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

Walrand, J.

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Wang, J.

Wang, J. Y.

Wang, Z.

Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ward, J.

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

Wehr, R.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Westberg, J.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011).
[CrossRef]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

Whittaker, E. A.

Wlodarczak, G.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003).
[CrossRef]

D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
[CrossRef]

Wojtewicz, S.

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

Wysocki, G.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef]

Ye, J.

Yu, H. G.

Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006).
[CrossRef]

G. E. Hall, T. J. Sears, and H. G. Yu, “Rotationally resolved spectrum of the A~(060)−X~(000) band of HCBr,” J. Mol. Spectrosc. 235, 125–131 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008).
[CrossRef]

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Aust. J. Phys.

D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).

Eur. Phys. J. D

A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010).
[CrossRef]

IEEE Trans. Antennas Propag.

P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

J. Chem. Phys.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006).
[CrossRef]

J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

B. C. Chang and T. J. Sears, “Frequency-modulation transient absorption-spectrum of the HCCl 1A′′(0,0,0)←X1A′(0,0,0) transition,” J. Chem. Phys. 102, 6347–6353 (1995).
[CrossRef]

B. C. Chang and T. J. Sears, “High resolution near-infrared electronic spectroscopy of HCBr,” J. Chem. Phys. 105, 2135–2140 (1996).
[CrossRef]

H. M. Pickett, “Effects of velocity averaging on the shapes of absorption lines,” J. Chem. Phys. 73, 6090–6094 (1980).
[CrossRef]

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

J. Mol. Spectrosc.

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003).
[CrossRef]

M. L. Hause, G. E. Hall, and T. J. Sears, “Sub-Doppler laser absorption spectroscopy of the A2Πi−X2∑+ (1, 0) band of CN: measurement of the N14 hyperfine parameters in A2Π CN,” J. Mol. Spectrosc. 253, 122–128 (2009).
[CrossRef]

G. E. Hall, T. J. Sears, and H. G. Yu, “Rotationally resolved spectrum of the A~(060)−X~(000) band of HCBr,” J. Mol. Spectrosc. 235, 125–131 (2006).
[CrossRef]

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the v4+v5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

J. Mol. Struct.

D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
[CrossRef]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals,” J. Opt. Soc. Am. B 29, 2971–2979 (2012).
[CrossRef]

P. Ehlers, J. Wang, I. Silander, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12  cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[CrossRef]

E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude-modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
[CrossRef]

A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[CrossRef]

I. Silander, P. Ehlers, J. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

J. Phys. B

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
[CrossRef]

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

Mol. Phys.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003).
[CrossRef]

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
[CrossRef]

Phys. Rev. A

R. Ciurylo and J. Szudy, “Line-mixing and collision-time asymmetry of spectral line shapes,” Phys. Rev. A 63, 042714 (2001).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011).
[CrossRef]

A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[CrossRef]

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[CrossRef]

Proc. Natl. Acad. Sci. USA

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef]

Science

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Other

The dispersive part of a speed-dependent response function (e.g., of Lorentzian or Voigt form) has occasionally been used to describe line asymmetry in absorption spectra [5]. However, to our knowledge, it has not previously been used to describe the response of spectroscopic techniques detecting dispersion.

M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published.
[CrossRef]

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner are preparing a manuscript to be called “Accuracy of the assessment of spectroscopic parameters by the NICE-OHMS technique.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simulation of the pressure dependence of the peak to peak value of the normalized NICE-OHMS signal for the absorption and dispersion modes of detection based upon the SDV model (solid and dashed curves, respectively) of a typical transition. The average and speed-dependent collision coefficients were taken as 2 and 0.75MHz/Torr, respectively, whereas the Doppler broadening and the modulation frequency were 235 and 381 MHz, respectively

Fig. 2.
Fig. 2.

Simulations of the influence of SDEs on NICE-OHMS signals of the targeted transition at a pressure of 180 Torr detected in (a) absorption and (b) dispersion. The individual markers in the uppermost window of each figure represent simulated NICE-OHMS signals using the SDV line-shape functions, whereas the solid and the dotted curves indicate the corresponding fitted NICE-OHMS signals using Voigt and Rautian line-shape functions, respectively. The residuals are shown in the middle and the lower window of each figure with the one corresponding to the Voigt line shape above the one for the Rautian. The molecular parameters are the same as in Fig. 1.

Fig. 3.
Fig. 3.

Schematic illustration of the experimental setup. Bold lines represent optical fibers, dotted lines mark free space beam propagation, whereas thin lines with arrows are electrical wires. OI, optical isolator; IM, intensity modulator; EOM, electro-optic modulator; pol., polarizer; λ/2, half-wave plate; λ/4, quarter-wave plate; PD, photodetector; Ph, phase shifter; BP, bandpass filter; LP, low-pass filter; DBM, double-balanced mixer; col1 and col2, collimators; PDH, Pound–Drever–Hall; PBS, polarizing beam splitter.

Fig. 4.
Fig. 4.

The five rows of panels [(a) and (b), (c) and (d), (e) and (f), (g) and (h), and (i) and (j)] represent NICE-OHMS signals from a 1000 ppm concentration of acetylene in N2 taken at pressures of 100, 140, 180, 220, and 250 Torr, respectively. The left and right columns of panels [(a), (c), and (e) and (b), (d), and (f), respectively] correspond to the absorption and dispersion modes of detection, respectively. The individual markers in the upper window of each panel represent measurements (only every 30th data point is shown), whereas the three solid curves in the same window (to a large extent overlapping) denote the best fits of NICE-OHMS signals based on the Voigt, the Rautian, and the SDV models. The residuals of the fits of each line shape are given in the lower windows, as marked.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χSabs(Δν)=cΓD1πRe[w(ζ1)w(ζ2)],
χSdisp(Δν)=cΓD1πIm[w(ζ1)w(ζ2)],
Sfmno(Δν,θ)=ηfmFπJ0(β)J1(β)P0ScrelpL×{[χabs(Δννm)χabs(Δν+νm)]sinθ+[χdisp(Δννm)2χdisp(Δν)+χdisp(Δν+νm)]cosθ},

Metrics