Abstract

An analytical expression for a Voigt dispersion line-shape function that incorporates speed-dependent effects (SDEs) on the collision broadening, applicable to spectroscopic techniques that measure dispersion signals, is presented. It is based upon a speed-dependent Voigt (SDV) model for absorption spectrometry that assumes that the molecular relaxation rate has a quadratic dependence on molecular speed. The expression is validated theoretically in the limit of small SDEs by demonstration that it reverts to the ordinary Voigt dispersion line-shape function and experimentally in a separate work by experiments performed by the noise-immune cavity-enhanced optical heterodyne molecular spectrometry technique. A comparison is given between the SDEs in the SDV absorption and dispersion line-shape functions. It is shown that both line shapes are affected significantly but differently by SDEs. The expression derived provides, for the first time to our knowledge, a possibility also for the techniques that measure dispersion signals to handle SDEs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  2. P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
    [CrossRef]
  3. J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
    [CrossRef]
  4. P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
    [CrossRef]
  5. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
    [CrossRef]
  6. P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
    [CrossRef]
  7. J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
    [CrossRef]
  8. B. Lance and D. Robert, “Correlation effect in spectral line shape from the Doppler to the collision regime,” J. Chem. Phys. 111, 789–791 (1999).
    [CrossRef]
  9. J. F. D’Eu, B. Lemoine, and F. Rohart, “Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles,” J. Mol. Spectrosc. 212, 96–110 (2002).
    [CrossRef]
  10. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
    [CrossRef]
  11. L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the ν4+ν5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
    [CrossRef]
  12. M. Lepere, “Line profile study with tunable diode laser spectrometers,” Spectrochim. Acta A 60, 3249–3258 (2004).
    [CrossRef]
  13. D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).
  14. G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
    [CrossRef]
  15. R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
    [CrossRef]
  16. D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
    [CrossRef]
  17. A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
    [CrossRef]
  18. B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
    [CrossRef]
  19. C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
    [CrossRef]
  20. G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
    [CrossRef]
  21. B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
    [CrossRef]
  22. F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
    [CrossRef]
  23. B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
    [CrossRef]
  24. G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
    [CrossRef]
  25. B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
    [CrossRef]
  26. C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
    [CrossRef]
  27. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
    [CrossRef]
  28. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
    [CrossRef]
  29. M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
    [CrossRef]
  30. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
    [CrossRef]
  31. S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
    [CrossRef]
  32. D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism,” Phys. Rev. A 65, 012501 (2001).
    [CrossRef]
  33. R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application,” Phys. Rev. A 65, 012502 (2001).
    [CrossRef]
  34. R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
    [CrossRef]
  35. R. Ciurylo, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029–1039 (1998).
    [CrossRef]
  36. C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
    [CrossRef]
  37. C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
    [CrossRef]
  38. C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
    [CrossRef]
  39. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef]
  40. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152(1983).
    [CrossRef]
  41. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
    [CrossRef]
  42. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  43. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
    [CrossRef]
  44. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
    [CrossRef]
  45. A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide: a laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
    [CrossRef]
  46. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
    [CrossRef]
  47. It is worth noting that, even though the collision–time asymmetry and line mixing give rise to an asymmetric response function that can be modeled by adding a small correction term of the form of a (Lorentzian) dispersion function to the Lorentzian absorption profile, this does not elucidate how SDEs affect the dispersion mode of detection (the detection is in those cases still done in absorption).
  48. H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545–557 (1927).
  49. R. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–557 (1926).
    [CrossRef]
  50. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry: experimental demonstration and validation of predicted line shape,” J. Opt. Soc. Am. B 29, 2980–2989 (2012).
    [CrossRef]
  51. H. M. Pickett, “Effects of velocity averaging on the shapes of absorption-lines,” J. Chem. Phys. 73, 6090–6094 (1980).
    [CrossRef]
  52. M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
    [CrossRef]
  53. F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171(2003).
    [CrossRef]
  54. F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
    [CrossRef]
  55. Note that, for convenience, all widths and frequencies used in this work, and thereby those given in Eq. (1), are given in natural frequencies, i.e., in units of hertz. These differ by a factor of 2π from those used in [33], which are given in angular frequencies. However, because the α, β, and ε entities constitute ratios of widths and frequencies, they, and all subsequent expressions of which they are part, are unaffected by the choice of frequency scale for the widths and frequencies.
  56. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
    [CrossRef]

2012 (2)

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry: experimental demonstration and validation of predicted line shape,” J. Opt. Soc. Am. B 29, 2980–2989 (2012).
[CrossRef]

2011 (4)

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

2010 (1)

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

2009 (4)

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the ν4+ν5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

2008 (3)

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

2007 (2)

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

2006 (1)

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

2005 (1)

C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
[CrossRef]

2004 (1)

M. Lepere, “Line profile study with tunable diode laser spectrometers,” Spectrochim. Acta A 60, 3249–3258 (2004).
[CrossRef]

2003 (2)

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171(2003).
[CrossRef]

2002 (1)

J. F. D’Eu, B. Lemoine, and F. Rohart, “Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles,” J. Mol. Spectrosc. 212, 96–110 (2002).
[CrossRef]

2001 (3)

D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism,” Phys. Rev. A 65, 012501 (2001).
[CrossRef]

R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application,” Phys. Rev. A 65, 012502 (2001).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

2000 (1)

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

1999 (2)

1998 (2)

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

R. Ciurylo, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029–1039 (1998).
[CrossRef]

1997 (2)

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

1996 (1)

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

1994 (1)

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

1987 (1)

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

1985 (1)

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

1984 (1)

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152(1983).
[CrossRef]

1981 (1)

D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).

1980 (3)

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

H. M. Pickett, “Effects of velocity averaging on the shapes of absorption-lines,” J. Chem. Phys. 73, 6090–6094 (1980).
[CrossRef]

1975 (2)

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
[CrossRef]

1974 (1)

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

1972 (2)

P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
[CrossRef]

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide: a laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

1967 (1)

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

1961 (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

1953 (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

1952 (1)

P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
[CrossRef]

1927 (1)

H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545–557 (1927).

1926 (1)

Anderson, P. W.

P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
[CrossRef]

Axner, O.

Baylis, W. E.

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

Berman, P. R.

P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
[CrossRef]

Bernath, P. F.

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152(1983).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef]

Blanquet, G.

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Boone, C. D.

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

Bouanich, J. P.

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171(2003).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Buldyreva, J.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

Casa, G.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Castrillo, A.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Ciurylo, R.

R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application,” Phys. Rev. A 65, 012502 (2001).
[CrossRef]

D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism,” Phys. Rev. A 65, 012501 (2001).
[CrossRef]

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

R. Ciurylo, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029–1039 (1998).
[CrossRef]

Claveau, C.

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

Colmont, J. M.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171(2003).
[CrossRef]

Cooper, J.

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

Corey, G. C.

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

Curl, R. F.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

D’Eu, J. F.

J. F. D’Eu, B. Lemoine, and F. Rohart, “Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles,” J. Mol. Spectrosc. 212, 96–110 (2002).
[CrossRef]

De Vizia, M. D.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

Dhyne, M.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the ν4+ν5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

Drummond, J. R.

R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application,” Phys. Rev. A 65, 012502 (2001).
[CrossRef]

D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism,” Phys. Rev. A 65, 012501 (2001).
[CrossRef]

Dube, P.

Dufour, G.

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Ehlers, P.

Fasci, E.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Fissiaux, L.

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the ν4+ν5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

Foltynowicz, A.

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Frueholz, R. P.

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

Galatry, L.

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

Gianfrani, L.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Hall, J. L.

Henry, A.

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Hurtmans, D.

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Joubert, P.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

Kaldor, A.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide: a laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Kramers, H. A.

H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545–557 (1927).

Kronig, R. L.

Lance, B.

B. Lance and D. Robert, “Correlation effect in spectral line shape from the Doppler to the collision regime,” J. Chem. Phys. 111, 789–791 (1999).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Lemoine, B.

J. F. D’Eu, B. Lemoine, and F. Rohart, “Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles,” J. Mol. Spectrosc. 212, 96–110 (2002).
[CrossRef]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152(1983).
[CrossRef]

Lepere, M.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the ν4+ν5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
[CrossRef]

M. Lepere, “Line profile study with tunable diode laser spectrometers,” Spectrochim. Acta A 60, 3249–3258 (2004).
[CrossRef]

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

Lerot, C.

C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152(1983).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Ma, L. S.

Ma, W.

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Mader, H.

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

Maki, A. G.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide: a laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Margottin-Maclou, M.

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Martin, B.

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

May, A. D.

D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism,” Phys. Rev. A 65, 012501 (2001).
[CrossRef]

R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application,” Phys. Rev. A 65, 012502 (2001).
[CrossRef]

McCourt, F. R.

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

McMahon, D. R. A.

D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Moretti, L.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

Nguyen, L.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

Nicolaisen, H. W.

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

Oka, T.

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

Olson, W. B.

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide: a laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152(1983).
[CrossRef]

Pickett, H. M.

H. M. Pickett, “Effects of velocity averaging on the shapes of absorption-lines,” J. Chem. Phys. 73, 6090–6094 (1980).
[CrossRef]

Pine, A. S.

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

Pollock, C. R.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Populaire, J. C.

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

Rao, D. R.

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

Rautian, S. G.

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Robert, D.

B. Lance and D. Robert, “Correlation effect in spectral line shape from the Doppler to the collision regime,” J. Chem. Phys. 111, 789–791 (1999).
[CrossRef]

Rohart, F.

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171(2003).
[CrossRef]

J. F. D’Eu, B. Lemoine, and F. Rohart, “Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles,” J. Mol. Spectrosc. 212, 96–110 (2002).
[CrossRef]

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

Rosenkranz, P.

P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
[CrossRef]

Schmidt, F. M.

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Shapiro, D. A.

D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism,” Phys. Rev. A 65, 012501 (2001).
[CrossRef]

R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application,” Phys. Rev. A 65, 012502 (2001).
[CrossRef]

Silander, I.

Smith, E. W.

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

Sobelman, I. I.

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Szudy, J.

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

Tittel, F. K.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Valentin, A.

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

Volk, C. H.

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

Walker, K. A.

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

Walrand, J.

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

Wang, J. Y.

Ward, J.

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

Wehr, R.

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

Wlodarczak, G.

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171(2003).
[CrossRef]

Ye, J.

Appl. Phys. B (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152(1983).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Atti. Congr. Int. Fis. Como. (1)

H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545–557 (1927).

Aust. J. Phys. (1)

D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).

IEEE Trans. Antennas Propag. (1)

P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997).
[CrossRef]

J. Chem. Phys. (6)

H. M. Pickett, “Effects of velocity averaging on the shapes of absorption-lines,” J. Chem. Phys. 73, 6090–6094 (1980).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).
[CrossRef]

B. Lance and D. Robert, “Correlation effect in spectral line shape from the Doppler to the collision regime,” J. Chem. Phys. 111, 789–791 (1999).
[CrossRef]

G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984).
[CrossRef]

G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009).
[CrossRef]

J. Mol. Spectrosc. (10)

B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009).
[CrossRef]

G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122ν3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003).
[CrossRef]

B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the ν4+ν5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006).
[CrossRef]

F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007).
[CrossRef]

B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008).
[CrossRef]

L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the ν4+ν5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009).
[CrossRef]

D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987).
[CrossRef]

B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[CrossRef]

J. F. D’Eu, B. Lemoine, and F. Rohart, “Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles,” J. Mol. Spectrosc. 212, 96–110 (2002).
[CrossRef]

F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171(2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (5)

J. Phys. B (1)

R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (10)

C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).
[CrossRef]

A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010).
[CrossRef]

M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011).
[CrossRef]

P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972).
[CrossRef]

J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
[CrossRef]

R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011).
[CrossRef]

C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).
[CrossRef]

J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975).
[CrossRef]

Mol. Phys. (2)

C. Lerot, G. Blanquet, J. P. Bouanich, J. Walrand, and M. Lepere, “Xe-broadening coefficients of CH3D12: a test of theoretical line shapes,” Mol. Phys. 103, 1213–1220 (2005).
[CrossRef]

C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (3)

P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952).
[CrossRef]

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
[CrossRef]

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

Phys. Rev. A (5)

D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. Formalism,” Phys. Rev. A 65, 012501 (2001).
[CrossRef]

R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. Application,” Phys. Rev. A 65, 012502 (2001).
[CrossRef]

R. Ciurylo, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029–1039 (1998).
[CrossRef]

M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012).
[CrossRef]

Science (1)

A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide: a laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef]

Sov. Phys. Usp. (1)

S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Spectrochim. Acta A (1)

M. Lepere, “Line profile study with tunable diode laser spectrometers,” Spectrochim. Acta A 60, 3249–3258 (2004).
[CrossRef]

Other (3)

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

It is worth noting that, even though the collision–time asymmetry and line mixing give rise to an asymmetric response function that can be modeled by adding a small correction term of the form of a (Lorentzian) dispersion function to the Lorentzian absorption profile, this does not elucidate how SDEs affect the dispersion mode of detection (the detection is in those cases still done in absorption).

Note that, for convenience, all widths and frequencies used in this work, and thereby those given in Eq. (1), are given in natural frequencies, i.e., in units of hertz. These differ by a factor of 2π from those used in [33], which are given in angular frequencies. However, because the α, β, and ε entities constitute ratios of widths and frequencies, they, and all subsequent expressions of which they are part, are unaffected by the choice of frequency scale for the widths and frequencies.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Left column: Absorption lineshape functions. Right column: The corresponding dispersion lineshape functions. The four rows of panels represent four different speed-dependent collision coefficients. The four curves in the upper part of each panel represent: i) dotted—the first term in the SDV lineshape function, i.e., χS,1abs or χS,1disp; ii) dashed-dotted—the second term in the SDV lineshape function, i.e., χS,2abs or χS,2disp; SDV) solid—the (total) SDV lineshape function, i.e., Eq. (5) or (7), also given by the difference between the dotted and dashed-dotted curves; and Voigt) dashed—the corresponding Voigt function, given by the Eq. (13) or (14). The curve in the lower part of each panel represents the difference between the SDV and the Voigt lineshape function. The transition is assumed to have an average collision coefficient (ΓL0) and a Doppler width (ΓD) of 2MHz/Torr and 235 MHz, respectively, which correspond to those of a specific line at around 1.55 μm in C2H2 at room temperature investigated in the accompanying validation paper [50]. The four rows of panels represent (from top to bottom) speed-dependent collision coefficients (ΓSD0) of 0.25, 0.50, 0.75, and 1.0MHz/Torr, respectively. The pressure was assumed to be 150 Torr.

Fig. 2.
Fig. 2.

(a) Relative discrepancy between the peak values of the SDV and Voigt absorption (A) and dispersion (D) lineshape functions, defined as (χSabsχVabs)/χVabs and (χSdispχVdisp)/χVdisp, (solid and dashed curves, respectively) as a function of pressure, for four different speed-dependent collision coefficients; from the bottom to the top (i.e., i, ii, iii, and iv), 0.25, 0.50, 0.75 and 1.0MHz/Torr, respectively. (b) Relative discrepancy between the slopes on resonance of the SDV and the Voigt dispersion (D) lineshape functions [defined as (χSdispχVdisp)/χVdisp, where the prime indicates a derivative with respect to frequency, i.e., /ν] as a function of pressure for the same four speed-dependent collision coefficients.

Fig. 3.
Fig. 3.

Solid and dashed curves (i and ii, respectively): the relative discrepancy between the peak values of the SDV and the Voigt absorption and dispersion lineshape functions as functions of speed-dependent collision coefficient for a transition with an average collision coefficient of 2MHz/Torr and a Doppler width of 235 MHz at a pressure of 150 Torr. Dotted curve (iii): the relative discrepancy between the slopes on resonance of the SDV and Voigt dispersion lineshape function.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Γ(va)=ΓL+ΓSD[(vav0)232],
χSabs=cΓD1πRe[ez12erfc(z1)ez22erfc(z2)],
z1,2=12(ε2+α)2+β2+ε2+αε+isign(β)2(ε2+α)2+β2(ε2+α),
α=ΓLΓSD32,β=(νν0)ΓSD,ε=ΓD2ΓSD,
χSabs=cΓD1πRe[w(ζ1)w(ζ2)]χS,1absχS,2abs,
Re(ζ1,2)=Im(z1,2)=sign(β)2(ε2+α)2+β2(ε2+α)Im(ζ1,2)=Re(z1,2)=12(ε2+α)2+β2+(ε2+α)ε.
χSdisp=cΓD1πIm[w(ζ1)w(ζ2)]χS,1dispχS,2disp.
Re(ζ1,2)β2ε[1α2ε2+3α2β28ε4+O(ΓS3)](ν0ν)ΓD[12ΓLΓD2ΓS+O(ΓS2)]x,
Im(ζ1)α2ε[1+β2α24αε2+α23β28ε4+O(ΓS3)]ΓLΓD{1+[(Δν)2ΓD2ΓL32ΓLΓLΓD2]ΓS+O(ΓS2)}y,
Im(ζ2)2ε+α2ε[1+β2α24αε2+O(ΓS2)]ΓDΓS+y[1+O(ΓS)],
limΓS0χSabs=χS,1abs=cΓD1πRe[w(x+iy)],
limΓS0χSdisp=χS,1disp=cΓD1πIm[w(x+iy)].
χVabs=cΓD1πRe[w(x+iy)],
χVdisp=cΓD1πIm[w(x+iy)],
Re(ζ1,2)sign(β)2|β|[112(ε2+αβ)+O(β2)].

Metrics