Abstract

An analytical expression for a Voigt dispersion line-shape function that incorporates speed-dependent effects (SDEs) on the collision broadening, applicable to spectroscopic techniques that measure dispersion signals, is presented. It is based upon a speed-dependent Voigt (SDV) model for absorption spectrometry that assumes that the molecular relaxation rate has a quadratic dependence on molecular speed. The expression is validated theoretically in the limit of small SDEs by demonstration that it reverts to the ordinary Voigt dispersion line-shape function and experimentally in a separate work by experiments performed by the noise-immune cavity-enhanced optical heterodyne molecular spectrometry technique. A comparison is given between the SDEs in the SDV absorption and dispersion line-shape functions. It is shown that both line shapes are affected significantly but differently by SDEs. The expression derived provides, for the first time to our knowledge, a possibility also for the techniques that measure dispersion signals to handle SDEs.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription