Abstract

Bottom-up fabrication methods are a promising approach for fabrication of three-dimensional photonic structures. These methods are cheap and relatively simple, but they always result in randomized photonic structures. For this reason, we investigate robustness of photonic bandgaps (PBGs) in two-dimensional plasmonic crystals (PlCs) to the four types of disorder: disorder in rod position, disorder in rod radius, disorder in rod cross section, and disorder due to missing rods. We compare behavior of two types of PBGs: Bragg PBGs, which arise due to Bragg reflections, and plasmonic PBGs due to localized surface plasmon resonances for electric field normal to the rods. Bragg PBGs are sensitive to the disorder since they stem from collective reflections within PlCs. On the other hand, the plasmonic PBGs are quite robust to the disorder since they arise from plasmonic resonances in single inclusions and they are not related to any collective phenomena. Therefore, applications of plasmonic PBGs could facilitate wide utilization of photonic bandgap media fabricated by bottom-up fabrication methods.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University, 2008).
  2. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
    [CrossRef]
  3. J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
    [CrossRef]
  4. A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
    [CrossRef]
  5. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
    [CrossRef]
  6. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
    [CrossRef]
  7. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
    [CrossRef]
  8. J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
    [CrossRef]
  9. J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
    [CrossRef]
  10. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).
    [CrossRef]
  11. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
    [CrossRef]
  12. G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
    [CrossRef]
  13. J. M. Pitarke, J. E. Inglesfield, and N. Giannakis, “Surface-plasmon polaritons in a lattice of metal cylinders,” Phys. Rev. B 75, 165415 (2007).
    [CrossRef]
  14. E. Lidorikis, S. Egusa, and J. D. Joannopoulos, “Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays,” J. Appl. Phys. 101, 054304 (2007).
    [CrossRef]
  15. C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281–286 (2008).
    [CrossRef]
  16. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270(2007).
    [CrossRef]
  17. C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
    [CrossRef]
  18. T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
    [CrossRef]
  19. J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82, 195301 (2010).
    [CrossRef]
  20. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
    [CrossRef]
  21. G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
    [CrossRef]
  22. B. Vasić and R. Gajić, “Broadband and subwavelength terahertz modulators using tunable plasmonic crystals with semiconductor rods,” J. Phys. D 45, 095101 (2012).
    [CrossRef]
  23. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
    [CrossRef]
  24. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999), pp. 67–68.
  25. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [CrossRef]
  26. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
    [CrossRef]
  27. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [CrossRef]
  28. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [CrossRef]
  29. A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993).
  30. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
    [CrossRef]
  31. T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001).
    [CrossRef]
  32. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
    [CrossRef]
  33. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
    [CrossRef]
  34. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]
  35. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
    [CrossRef]

2012

2011

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[CrossRef]

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
[CrossRef]

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
[CrossRef]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[CrossRef]

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

2010

C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82, 195301 (2010).
[CrossRef]

2008

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
[CrossRef]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[CrossRef]

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281–286 (2008).
[CrossRef]

2007

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270(2007).
[CrossRef]

J. M. Pitarke, J. E. Inglesfield, and N. Giannakis, “Surface-plasmon polaritons in a lattice of metal cylinders,” Phys. Rev. B 75, 165415 (2007).
[CrossRef]

E. Lidorikis, S. Egusa, and J. D. Joannopoulos, “Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays,” J. Appl. Phys. 101, 054304 (2007).
[CrossRef]

T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

2005

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

2003

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

2001

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
[CrossRef]

1999

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

1998

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).
[CrossRef]

1994

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

1993

A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993).

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[CrossRef]

Anders, A.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

Atkinson, R.

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

Aussenegg,

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Bartal, G.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Biswas, R.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
[CrossRef]

Blanco, A.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

Boltasseva, A.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[CrossRef]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Buonsati, R.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

Bürgi, T.

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Ceperley, D. P.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
[CrossRef]

Chan, C. T.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
[CrossRef]

Chang, R. P. H.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Cunningham, A.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Dickson, W.

Diduszko, R.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Dintinger, J.

Dutton, R. W.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

Economou, E. N.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).
[CrossRef]

Egusa, S.

E. Lidorikis, S. Egusa, and J. D. Joannopoulos, “Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays,” J. Appl. Phys. 101, 054304 (2007).
[CrossRef]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Evans, P.

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[CrossRef]

Fan, S.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

Froufe-Pérez, L. S.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

Gajc, M.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Gajic, R.

B. Vasić and R. Gajić, “Broadband and subwavelength terahertz modulators using tunable plasmonic crystals with semiconductor rods,” J. Phys. D 45, 095101 (2012).
[CrossRef]

Galisteo-López, J. F.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

Garcia, G.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
[CrossRef]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

Giannakis, N.

J. M. Pitarke, J. E. Inglesfield, and N. Giannakis, “Surface-plasmon polaritons in a lattice of metal cylinders,” Phys. Rev. B 75, 165415 (2007).
[CrossRef]

Guo, P.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Hendren, W.

Ho, K. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Huang, C.-p.

C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Huang, H.

C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Ibisate, M.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

Inglesfield, J. E.

J. M. Pitarke, J. E. Inglesfield, and N. Giannakis, “Surface-plasmon polaritons in a lattice of metal cylinders,” Phys. Rev. B 75, 165415 (2007).
[CrossRef]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Ito, T.

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001).
[CrossRef]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[CrossRef]

Joannopoulos, J. D.

E. Lidorikis, S. Egusa, and J. D. Joannopoulos, “Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays,” J. Appl. Phys. 101, 054304 (2007).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University, 2008).

Ketterson, J. B.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Kildishev, A. V.

Kolodziejak, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Kottmann, J. P.

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Kuzmiak, V.

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Lederer, F.

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Leon, J.

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82, 195301 (2010).
[CrossRef]

Li, S. Q.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Lidorikis, E.

E. Lidorikis, S. Egusa, and J. D. Joannopoulos, “Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays,” J. Appl. Phys. 101, 054304 (2007).
[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).
[CrossRef]

Liu, Z.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Llordes, A.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

López, C.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[CrossRef]

Maradudin, A. A.

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993).

Martin, O. J. F.

McGurn, A. R.

A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993).

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University, 2008).

Mendelsberg, R. J.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

Milliron, D. J.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

Modinos, A.

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

Mühlig, S.

Naik, G.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Naik, G. V.

Neureuther, A. R.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
[CrossRef]

Ni, X.

O’Connor, D.

Odom, T. W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Pacholski, C.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Pawlak, D. A.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Pincemin, F.

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

Pitarke, J. M.

J. M. Pitarke, J. E. Inglesfield, and N. Giannakis, “Surface-plasmon polaritons in a lattice of metal cylinders,” Phys. Rev. B 75, 165415 (2007).
[CrossRef]

Pollard, R.

Popov, V. V.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

Rahachou, A. I.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270(2007).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Richardson, T. J.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

Rockstuhl, C.

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[CrossRef]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[CrossRef]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281–286 (2008).
[CrossRef]

Rozniatowski, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Runnerstrom, E. L.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

Sakoda, K.

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001).
[CrossRef]

Sands, T. D.

Sapienza, R.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

Scharf, T.

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[CrossRef]

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281–286 (2008).
[CrossRef]

Scheeler, S.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Schroeder, J. L.

Seideman, T.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Shalaev, V.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Shalkevich, N.

Shur, M. S.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

Sigalas, M. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).
[CrossRef]

Sihvola, A.

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999), pp. 67–68.

Sinsermsuksakul, P.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
[CrossRef]

Smalc, J.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Soukoulis, C. M.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).
[CrossRef]

Stacy, A. M.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Stefanou, N.

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

Taliercio, T.

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82, 195301 (2010).
[CrossRef]

Tao, A. R.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

Tsai, K.-T.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Turczynski, S.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Vasic, B.

B. Vasić and R. Gajić, “Broadband and subwavelength terahertz modulators using tunable plasmonic crystals with semiconductor rods,” J. Phys. D 45, 095101 (2012).
[CrossRef]

Vendik, I.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Veronis, G.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

Wang, Q.-j.

C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Wang, Y.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Wang, Y.-L.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University, 2008).

Wurtz, G. A.

Yang, P.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
[CrossRef]

Yannopapas, V.

Yao, J.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Yin, X.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Yin, X.-g.

C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Zayats, A. V.

Zhang, L.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Zhang, X.

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Zhou, W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Zhu, Y.-y.

C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Zozoulenko, I. V.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270(2007).
[CrossRef]

ACS Nano

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[CrossRef]

Adv. Funct. Mater.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Adv. Mater.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011).
[CrossRef]

Appl. Phys. Lett.

T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007).
[CrossRef]

J. Appl. Phys.

G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005).
[CrossRef]

E. Lidorikis, S. Egusa, and J. D. Joannopoulos, “Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays,” J. Appl. Phys. 101, 054304 (2007).
[CrossRef]

J. Microsc.

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281–286 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270(2007).
[CrossRef]

J. Phys. D

B. Vasić and R. Gajić, “Broadband and subwavelength terahertz modulators using tunable plasmonic crystals with semiconductor rods,” J. Phys. D 45, 095101 (2012).
[CrossRef]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).
[CrossRef]

Laser Photon. Rev.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Metamaterials

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
[CrossRef]

Nano Lett.

G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[CrossRef]

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008).
[CrossRef]

Nat. Mater.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[CrossRef]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phil. Trans. R. Soc. A

J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011).
[CrossRef]

Phys. Rev. B

J. M. Pitarke, J. E. Inglesfield, and N. Giannakis, “Surface-plasmon polaritons in a lattice of metal cylinders,” Phys. Rev. B 75, 165415 (2007).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993).

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999).
[CrossRef]

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82, 195301 (2010).
[CrossRef]

Phys. Rev. Lett.

C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).
[CrossRef]

Science

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

Other

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999), pp. 67–68.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematics of the considered PlCs: (a) ordered PlC, (b) PlC with disorder in rod position, (c) PlC with disorder in rod radius, (d) PlC with disorder in rod cross section, and (e) PlC with disorder due to missing rods.

Fig. 2.
Fig. 2.

(a) Transmission coefficients for the ordered PlC, (b) effective permittivity of the PlC according to Eq. (2), and (c) band structure of an infinite PlC with square lattice from the Γ to the X point. Gray rectangles in parts (a) and (c) denote the plasmonic PBG.

Fig. 3.
Fig. 3.

(a) Distribution of magnetic field magnitude at 1.05 μm and (b) the field profile along the dashed line in part (a). (c) Distribution of magnetic field magnitude at 2 μm and (d) the field profile along the dashed line in part (c).

Fig. 4.
Fig. 4.

Transmission coefficients for the PlCs with disorder in rod position.

Fig. 5.
Fig. 5.

(a) Transmission coefficients for the single layer PlCs with decreased separation d between rods. Magnetic field magnitudes at LSPR for: (b) d=300nm, (c) d=200nm, (d) d=100nm, and (e), (f) d=5nm.

Fig. 6.
Fig. 6.

Transmission coefficients through the PlCs with disorder in rod radius.

Fig. 7.
Fig. 7.

(a) Transmission coefficients through the single-layer PlCs with three values of rod radius r0. Magnetic field magnitudes at LSPR for: (b) r0=50nm, (c) r0=100nm, and (d) r0=150nm.

Fig. 8.
Fig. 8.

Transmission coefficients for the PlCs with disorder in rod cross section.

Fig. 9.
Fig. 9.

(a) Transmission coefficients for the single layer PlCs with the rods’ semiaxis 66.67 nm and 150 nm. Magnetic field magnitudes at LSPR for: (b) circular rods, (c) rods with long axis parallel to x axis, (d) rods with long axis parallel to y axis, and (e), (f) rods with mixed orientation.

Fig. 10.
Fig. 10.

Transmission coefficients for the PlCs with disorder due to missing rods.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

εi(ω)=εiωp2ω(ω+jγc),
εeff,2D=εh+fεhεiεhεh+L(1f)(εiεh),
ωres=(1f)Lεh+(1f)L(εεh)ωp.

Metrics