Abstract

We consider the problem of teleporting superposed coherent state using nonmaximally entangled coherent state (NMECS) as quantum channel and study the effect of entanglement on the quality of teleportation. Based on the amount of entanglement shared between the sender and the receiver, we propose two unitary operation strategies to be adopted by the receiver to recover replica of information state with as large a fidelity as possible, and analyzed the behavior of minimum average fidelity (MAF) and mean fidelity (MF) with respect to entanglement. It is fascinatingly found that if the maximally entangled coherent state used in previously proposed schemes is replaced by a particular NMECS, MAF of quantum teleportation increases appreciably at small coherent amplitudes. For coherent amplitudes with |α|20.5, MECS gives higher MF, while for |α|20.5, NMECS gives higher MF.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  2. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
    [CrossRef]
  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [CrossRef]
  4. Y.-H. Kim, S. P. Kulik, and Y. Shilo, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. 86, 1370–1373 (2001).
    [CrossRef]
  5. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
    [CrossRef]
  6. B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
    [CrossRef]
  7. C. C. Gerry, “Generation of optical macroscopic superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium,” Phys. Rev. A 59, 4095–4098 (1999).
    [CrossRef]
  8. J. C. Howell and J. A. Yeazell, “Entangling macroscopic quantum states,” Phys. Rev. A 62, 012102 (2000).
    [CrossRef]
  9. J.-Q. Liao and L.-M. Kuang, “Generation of entangled coherent state of two cavity fields via coupling to a SQUID-based charge qubit,” J. Phys. B 40, 1845–1852 (2007).
    [CrossRef]
  10. X. Wang and B. C. Sanders, “Multipartite entangled coherent state,” Phys. Rev. A 65, 012303 (2001).
    [CrossRef]
  11. S. Sivakumar, “Entanglement in bipartite generalized coherent states,” Int. J. Theor. Phys. 48, 894–904 (2009).
    [CrossRef]
  12. O. Hirota, S. J. van Enk, K. Nakamura, M. Sohma, and K. Kato, “Entangled nonorthogonal states and their decoherence properties,” http://arxiv.org/abs/quant-ph/0101096 .
  13. O. Hirota and M. Sasaki, “Entangled state based on nonorthogonal states,” http://arxiv.org/abs/quant-ph/0101018 .
  14. B. Yurke and D. Stoler, “Generating quantum mechanical superpostions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986).
    [CrossRef]
  15. B. C. Sanders and G. J. Milburn, “Quantum limits to all-optical phase shifts in a Kerr nonlinear medium,” Phys. Rev. A 45, 1919–1923 (1992).
    [CrossRef]
  16. H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004).
    [CrossRef]
  17. H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005).
    [CrossRef]
  18. A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004).
    [CrossRef]
  19. B. Wang and L. M. Duan, “Engineering superpostions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
    [CrossRef]
  20. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006).
    [CrossRef]
  21. J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
    [CrossRef]
  22. S. J. Van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
    [CrossRef]
  23. X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
    [CrossRef]
  24. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007).
    [CrossRef]
  25. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009).
    [CrossRef]
  26. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010).
    [CrossRef]
  27. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007).
    [CrossRef]
  28. J.-Q. Liao and L.-M. Kuang, “Near-complete teleportation of two-mode four component entangled coherent states,” J. Phys. B 40, 1183–1194 (2007).
    [CrossRef]
  29. H. N. Phien and N. B. An, “Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements,” Phys. Lett. A 372, 2825–2829 (2008).
    [CrossRef]
  30. M. K. Mishra and H. Prakash, “Teleportation of a two-mode entangled coherent state encoded with two-qubit information,” J. Phys. B 43, 185501 (2010).
    [CrossRef]
  31. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” http://arxiv.org/abs/quant-ph/0306004 .
  32. H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A 65, 042305 (2002).
    [CrossRef]
  33. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  34. N. Lutkenhaus, J. Calsaminglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
    [CrossRef]
  35. L. Henderson, L. Hardy, and V. Vedral, “Two-state teleportation,” Phys. Rev. A 61, 062306 (2000).
    [CrossRef]

2010 (2)

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010).
[CrossRef]

M. K. Mishra and H. Prakash, “Teleportation of a two-mode entangled coherent state encoded with two-qubit information,” J. Phys. B 43, 185501 (2010).
[CrossRef]

2009 (2)

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009).
[CrossRef]

S. Sivakumar, “Entanglement in bipartite generalized coherent states,” Int. J. Theor. Phys. 48, 894–904 (2009).
[CrossRef]

2008 (1)

H. N. Phien and N. B. An, “Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements,” Phys. Lett. A 372, 2825–2829 (2008).
[CrossRef]

2007 (4)

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007).
[CrossRef]

J.-Q. Liao and L.-M. Kuang, “Near-complete teleportation of two-mode four component entangled coherent states,” J. Phys. B 40, 1183–1194 (2007).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007).
[CrossRef]

J.-Q. Liao and L.-M. Kuang, “Generation of entangled coherent state of two cavity fields via coupling to a SQUID-based charge qubit,” J. Phys. B 40, 1845–1852 (2007).
[CrossRef]

2006 (2)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[CrossRef]

J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

2005 (2)

B. Wang and L. M. Duan, “Engineering superpostions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[CrossRef]

H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005).
[CrossRef]

2004 (3)

A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004).
[CrossRef]

H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004).
[CrossRef]

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

2002 (1)

H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A 65, 042305 (2002).
[CrossRef]

2001 (4)

S. J. Van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
[CrossRef]

Y.-H. Kim, S. P. Kulik, and Y. Shilo, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. 86, 1370–1373 (2001).
[CrossRef]

X. Wang and B. C. Sanders, “Multipartite entangled coherent state,” Phys. Rev. A 65, 012303 (2001).
[CrossRef]

2000 (2)

J. C. Howell and J. A. Yeazell, “Entangling macroscopic quantum states,” Phys. Rev. A 62, 012102 (2000).
[CrossRef]

L. Henderson, L. Hardy, and V. Vedral, “Two-state teleportation,” Phys. Rev. A 61, 062306 (2000).
[CrossRef]

1999 (2)

N. Lutkenhaus, J. Calsaminglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

C. C. Gerry, “Generation of optical macroscopic superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium,” Phys. Rev. A 59, 4095–4098 (1999).
[CrossRef]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1997 (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

1993 (1)

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1992 (2)

B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
[CrossRef]

B. C. Sanders and G. J. Milburn, “Quantum limits to all-optical phase shifts in a Kerr nonlinear medium,” Phys. Rev. A 45, 1919–1923 (1992).
[CrossRef]

1986 (1)

B. Yurke and D. Stoler, “Generating quantum mechanical superpostions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986).
[CrossRef]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

An, N. B.

H. N. Phien and N. B. An, “Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements,” Phys. Lett. A 372, 2825–2829 (2008).
[CrossRef]

Aspelmeyer, M.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

Bennett, C. H.

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Brassard, H. G.

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Calsaminglia, J.

N. Lutkenhaus, J. Calsaminglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Chandra, N.

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007).
[CrossRef]

Crepeau, C.

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Duan, L. M.

B. Wang and L. M. Duan, “Engineering superpostions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[CrossRef]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Gerry, C. C.

C. C. Gerry, “Generation of optical macroscopic superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium,” Phys. Rev. A 59, 4095–4098 (1999).
[CrossRef]

Grangier, P.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[CrossRef]

Ham, B. S.

H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004).
[CrossRef]

Hardy, L.

L. Henderson, L. Hardy, and V. Vedral, “Two-state teleportation,” Phys. Rev. A 61, 062306 (2000).
[CrossRef]

Henderson, L.

L. Henderson, L. Hardy, and V. Vedral, “Two-state teleportation,” Phys. Rev. A 61, 062306 (2000).
[CrossRef]

Hettich, C.

J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Hirota, O.

S. J. Van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

Howell, J. C.

J. C. Howell and J. A. Yeazell, “Entangling macroscopic quantum states,” Phys. Rev. A 62, 012102 (2000).
[CrossRef]

Jennewein, T.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

Jeong, H.

H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005).
[CrossRef]

A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004).
[CrossRef]

H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004).
[CrossRef]

H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A 65, 042305 (2002).
[CrossRef]

Joza, R.

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Kaltenbaek, R.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

Kim, M. S.

H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004).
[CrossRef]

A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004).
[CrossRef]

H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A 65, 042305 (2002).
[CrossRef]

Kim, Y.-H.

Y.-H. Kim, S. P. Kulik, and Y. Shilo, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. 86, 1370–1373 (2001).
[CrossRef]

Kuang, L.-M.

J.-Q. Liao and L.-M. Kuang, “Near-complete teleportation of two-mode four component entangled coherent states,” J. Phys. B 40, 1183–1194 (2007).
[CrossRef]

J.-Q. Liao and L.-M. Kuang, “Generation of entangled coherent state of two cavity fields via coupling to a SQUID-based charge qubit,” J. Phys. B 40, 1845–1852 (2007).
[CrossRef]

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, and Y. Shilo, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. 86, 1370–1373 (2001).
[CrossRef]

Laurat, J.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[CrossRef]

Liao, J.-Q.

J.-Q. Liao and L.-M. Kuang, “Generation of entangled coherent state of two cavity fields via coupling to a SQUID-based charge qubit,” J. Phys. B 40, 1845–1852 (2007).
[CrossRef]

J.-Q. Liao and L.-M. Kuang, “Near-complete teleportation of two-mode four component entangled coherent states,” J. Phys. B 40, 1183–1194 (2007).
[CrossRef]

Lindenthal, M.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

Lund, A. P.

H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005).
[CrossRef]

A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004).
[CrossRef]

Lutkenhaus, N.

N. Lutkenhaus, J. Calsaminglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Milburn, G. J.

B. C. Sanders and G. J. Milburn, “Quantum limits to all-optical phase shifts in a Kerr nonlinear medium,” Phys. Rev. A 45, 1919–1923 (1992).
[CrossRef]

Mishra, M. K.

M. K. Mishra and H. Prakash, “Teleportation of a two-mode entangled coherent state encoded with two-qubit information,” J. Phys. B 43, 185501 (2010).
[CrossRef]

Molmer, K.

J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Nielsen, B. M.

J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Nielsen, J. S. N.

J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[CrossRef]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Peres, A.

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Phien, H. N.

H. N. Phien and N. B. An, “Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements,” Phys. Lett. A 372, 2825–2829 (2008).
[CrossRef]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Polzik, E. S.

J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Prakash, H.

M. K. Mishra and H. Prakash, “Teleportation of a two-mode entangled coherent state encoded with two-qubit information,” J. Phys. B 43, 185501 (2010).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007).
[CrossRef]

Prakash, R.

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007).
[CrossRef]

Ralph, T. C.

H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005).
[CrossRef]

A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004).
[CrossRef]

H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004).
[CrossRef]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Sanders, B. C.

X. Wang and B. C. Sanders, “Multipartite entangled coherent state,” Phys. Rev. A 65, 012303 (2001).
[CrossRef]

B. C. Sanders and G. J. Milburn, “Quantum limits to all-optical phase shifts in a Kerr nonlinear medium,” Phys. Rev. A 45, 1919–1923 (1992).
[CrossRef]

B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
[CrossRef]

Shilo, Y.

Y.-H. Kim, S. P. Kulik, and Y. Shilo, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. 86, 1370–1373 (2001).
[CrossRef]

Shivani,

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007).
[CrossRef]

Sivakumar, S.

S. Sivakumar, “Entanglement in bipartite generalized coherent states,” Int. J. Theor. Phys. 48, 894–904 (2009).
[CrossRef]

Stoler, D.

B. Yurke and D. Stoler, “Generating quantum mechanical superpostions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986).
[CrossRef]

Suominen, K.-A.

N. Lutkenhaus, J. Calsaminglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Tualle-Brouri, R.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[CrossRef]

Ursin, R.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

Van Enk, S. J.

S. J. Van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

Vedral, V.

L. Henderson, L. Hardy, and V. Vedral, “Two-state teleportation,” Phys. Rev. A 61, 062306 (2000).
[CrossRef]

Walther, P.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

Wang, B.

B. Wang and L. M. Duan, “Engineering superpostions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[CrossRef]

Wang, X.

X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
[CrossRef]

X. Wang and B. C. Sanders, “Multipartite entangled coherent state,” Phys. Rev. A 65, 012303 (2001).
[CrossRef]

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Yeazell, J. A.

J. C. Howell and J. A. Yeazell, “Entangling macroscopic quantum states,” Phys. Rev. A 62, 012102 (2000).
[CrossRef]

Yurke, B.

B. Yurke and D. Stoler, “Generating quantum mechanical superpostions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986).
[CrossRef]

Zeilinger, A.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Int. J. Mod. Phys. B (2)

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010).
[CrossRef]

Int. J. Theor. Phys. (1)

S. Sivakumar, “Entanglement in bipartite generalized coherent states,” Int. J. Theor. Phys. 48, 894–904 (2009).
[CrossRef]

J. Phys. B (4)

J.-Q. Liao and L.-M. Kuang, “Generation of entangled coherent state of two cavity fields via coupling to a SQUID-based charge qubit,” J. Phys. B 40, 1845–1852 (2007).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007).
[CrossRef]

J.-Q. Liao and L.-M. Kuang, “Near-complete teleportation of two-mode four component entangled coherent states,” J. Phys. B 40, 1183–1194 (2007).
[CrossRef]

M. K. Mishra and H. Prakash, “Teleportation of a two-mode entangled coherent state encoded with two-qubit information,” J. Phys. B 43, 185501 (2010).
[CrossRef]

Nature (2)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004).
[CrossRef]

Phys. Lett. A (1)

H. N. Phien and N. B. An, “Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements,” Phys. Lett. A 372, 2825–2829 (2008).
[CrossRef]

Phys. Rev. (2)

Y.-H. Kim, S. P. Kulik, and Y. Shilo, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. 86, 1370–1373 (2001).
[CrossRef]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Phys. Rev. A (15)

B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
[CrossRef]

C. C. Gerry, “Generation of optical macroscopic superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium,” Phys. Rev. A 59, 4095–4098 (1999).
[CrossRef]

J. C. Howell and J. A. Yeazell, “Entangling macroscopic quantum states,” Phys. Rev. A 62, 012102 (2000).
[CrossRef]

X. Wang and B. C. Sanders, “Multipartite entangled coherent state,” Phys. Rev. A 65, 012303 (2001).
[CrossRef]

B. C. Sanders and G. J. Milburn, “Quantum limits to all-optical phase shifts in a Kerr nonlinear medium,” Phys. Rev. A 45, 1919–1923 (1992).
[CrossRef]

H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004).
[CrossRef]

H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005).
[CrossRef]

A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004).
[CrossRef]

B. Wang and L. M. Duan, “Engineering superpostions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[CrossRef]

S. J. Van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
[CrossRef]

H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007).
[CrossRef]

H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A 65, 042305 (2002).
[CrossRef]

N. Lutkenhaus, J. Calsaminglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

L. Henderson, L. Hardy, and V. Vedral, “Two-state teleportation,” Phys. Rev. A 61, 062306 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

B. Yurke and D. Stoler, “Generating quantum mechanical superpostions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986).
[CrossRef]

J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Science (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[CrossRef]

Other (3)

O. Hirota, S. J. van Enk, K. Nakamura, M. Sohma, and K. Kato, “Entangled nonorthogonal states and their decoherence properties,” http://arxiv.org/abs/quant-ph/0101096 .

O. Hirota and M. Sasaki, “Entangled state based on nonorthogonal states,” http://arxiv.org/abs/quant-ph/0101018 .

T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” http://arxiv.org/abs/quant-ph/0306004 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Plots (a), (b), (c), and (d) show the variation of concurrence [Eq. (7)] of an arbitrary pure ECS [Eq. (1) or (5)] with respect to entanglement parameter θ and φ, for |α|2 equal to 0.1, 0.2, 0.5, and 1.5, respectively.

Fig. 2.
Fig. 2.

Scheme for teleportation. PS represents—π/2 phase shifters that convert state |α to |iα. BS represents symmetric beam splitters that transforms state |α,βa,b to |(α+iβ)/2,(iα+β)/2c,d. Bold numbers denote quantum modes.

Fig. 3.
Fig. 3.

Plots (a), (b), and (c) show variation of Fmin,av with respect to entanglement parameters θ and φ for different values of |α|2. Plot (d) shows variation of Fmin,av(1) for a particular nonmaximal ECS [Eq. (9)], Fmin,av(2) for maximal ECS [Eq. (8)], and difference D with respect to mean photon number |α|2.

Fig. 4.
Fig. 4.

Variation of mean fidelity with respect to |α|2. Normal curve and dashed curve show the mean fidelity (mean over all information states) when MECS (|E(θ=π/2,φ=π)1,2) and NMECS (|E(θ=π/2,φ=0,2π)1,2) are used as quantum channel with unitary operation strategies 2 and 1, respectively.

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

|E1,2=N(cosθ2|α,α+sinθ2eiφ|α,α)1,2,{θ[0,π],φ[0,2π)},
N=(1+x4sinθcosφ)1/2
|±=[2(1±x2)]1/2(|α±|α).
|±α=12[(1+x2)1/2|+±(1x2)1/2|].
|E1,2=N[12{C+(1+x2)|+,++C(1x4)1/2(|+,+|,+)+C+(1x2)|,}]1,2,
C±=cosθ2±sinθ2eiφ.
C=|[(1x4)sinθcosφ]/[(1+x4sinθcosφ)]|.
|E(θ=π/2,φ=π)1,2=(2)1/2[|+,+|,+]1,2,
|E(θ=π/2,φ=0,2π)1,2=[2(1+x4)]1/2[(1+x2)|+,++(1x2)|,]1,2,
|I0=[ε+|α+ε|α]0,
[|ε+|2+|ε|2+2x2Re(ε+*ε)]=1.
|I0=[A+|++A|]0.
|A+|2+|A|2=1.
A±=(ε+±ε)[12(1±x2)]1/2,
ε±=12[A+(1+x2)1/2±A(1x2)1/2].
|ψ0,1,2=|I0|E12=N[ε+{cosθ2|α,α,α+sinθ2eiφ|α,α,α} +ε{cosθ2|α,α,α+sinθ2eiφ|α,α,α}]0,1,2.
|ψ3,4,2=N[ε+{cosθ2|2α,0,α+sinθ2eiφ|0,2α,α} +ε{cosθ2|0,2α,α+sinθ2eiφ|2α,0,α}]3,4,2.
|±2α=x|0+12(1x2)|NZE,2α±[12(1x4)]1/2|ODD,2α,
|NZE,2α=[2(1x2)]1[(|2α+|2α)2x|0],
|ODD,2α=[2(1x4)]1/2(|2α|2α).
|ψ3,4,2=N2[|0,03,4x(ε++ε){p1C+|++q1C|}2+12{q2|NZE,03,4{p1(C+A+p+CAq)|++q1(CA+p+C+Aq)|}2+q2|0,NZE3,4{p1(C+A+pCAq)|++q1(CA+pC+Aq)|}2+(pq)1|ODD,03,4{p1(CA+p+C+Aq)|++q1(C+A+p+CAq)|}2+(pq)1|0,ODD3,4{p1(CA+pC+Aq)|++q1(C+A+pCAq)|}2}],
p(1+x2)1/2,q(1x2)1/2.
|BI2{p1C+|++q1C|}2,|BII2{p1(C+A+p+CAq)|++q1(CA+p+C+Aq)|}2,|BIII2{p1(C+A+pCAq)|++q1(CA+pC+Aq)|}2,|BIV2{p1(CA+p+C+Aq)|++q1(C+A+p+CAq)|}2,|BV2{p1(CA+pC+Aq)|++q1(C+A+pCAq)|}2,
UI=UII=I,UIII=|++|||,UIV=|+|+|+|,UV=|+||+|.
|TI(1)2=NI{C+p1|++Cq1|}2,|TII(1)2=NII{(C+A+p+CAq)p1|++(C+Aq+CA+p)q1|}2,|TIII(1)2=NIII{(C+A+pCAq)p1|++(C+AqCA+p)q1|}2,|TIV(1)2=NIV{(C+A+p+CAq)q1|++(C+Aq+CA+p)p1|}2,|TV(1)2=NV{(C+A+pCAq)q1|++(C+AqCA+p)p1|}2.
F=|I|Ti|2.
Fav.=i=IVFiPi,
Fav(1)=14N2[2x2(1+cosω)(1+x2)1{1+x2sinθcosφ+cosω(sinθcosφ+x2)+(1x4)1/2sinω(cosθcosξsinθsinφsinξ)}+(1+sinθcosφ)(1x2cosω)2+(1x2)2{1+sinθcosφ+(1x4)1sin2ω(1sinθcosφ)(cos2ξ+x4sin2ξ)}+(1x4)(1sinθcosφ)sin2ωcos2ξ]
UI=UIV=I,UII=|+|+|+|,UIII=|+||+|,UV=|++|||.
|TI(2)2=NI{C+p1|++Cq1|}2,|TII(2)2=NII{(CA+p+C+Aq)q1|++(CAq+C+A+p)p1|}2,|TIII(2)2=NIII{(CA+pC+Aq)q1|++(CAqC+A+p)p1|}2,|TIV(2)2=NIV{(CA+p+C+Aq)p1|++(CAq+C+A+p)q1|}2,|TV(2)2=NV{(CA+pC+Aq)p1|++(CAqC+A+p)q1|}2.
Fav(2)=14N2[2x2(1+cosω)(1+x2)1{1+x2sinθcosφ+cosω(sinθcosφ+x2)+(1x4)1/2sinω(cosθcosξsinθsinφsinξ)}+(1x2)2{(1x4)1(1sinθcosφ)(1x2cosω)2+(1+sinθcosφ)sin2ωcos2ξ}+(1x4)×(1sinθcosφ)+sin2ω(1+sinθcosφ)(cos2ξ+x4sin2ξ)]
Fav(1)=1[x2(1+x2)sin2ω][2(1+x4)]1.
Fmin.,av(1)=1[x2(1+x2)][2(1+x4)]1.
Fav(2)=12x2cos2ω2(cos2ω2+x2sin2ω2)(1+x2)2.
Fmin,av(2)=12x2(1+x2)2.
D=Fmin,av(1)Fmin,av(2)=[x2(3+x4)(1x2)][2(1+x4)(1+x2)2]1.
Fav,mean(1)=16N2(1+x2)1[(x6+3x2+4)+(3x6+2x4+x2+2)sinθcosφ].
Fav,mean(2)=16N2(1+x2)1[(x6+3x2+4)+(3x6+4x4+x22)sinθcosφ].
Fav,mean(1)=13[(1+x4)(1+x2)]1[(2x6+x4+2x2+3)],
Fav,mean(2)=13[(1x4)(1+x2)]1[(2x62x4+x2+3)],
NI=[2(1+x2sinθcosφ)]1/2NII=[(1+sinθcosφ)+(1x4)1(1sinθcosφ)(12x2cosω+x4)+2(1x4)1/2sinω(cosθcosξ+2x2sinθsinφsinξ)]1/2,NIII=[(1+sinθcosφ)+(1x4)1(1sinθcosφ)(12x2cosω+x4)2(1x4)1/2sinω(cosθcosξ+2x2sinθsinφsinξ)]1/2,NIV=[(1sinθcosφ)+(1x4)1(1+sinθcosφ)(12x2cosω+x4)+2(1x4)1/2sinω(cosθcosξ2x2sinθsinφsinξ)]1/2,NV=[(1sinθcosφ)+(1x4)1(1+sinθcosφ)(12x2cosω+x4)2(1x4)1/2sinω(cosθcosξ2x2sinθsinφsinξ)]1/2.
PI=[x2(1+cosω)]/[2(1+x2)(1+x4sinθcosφ)|NI|2],PII=(1x2)2/[8(1+x4sinθcosφ)|NII|2],PIII=(1x2)2/[8(1+x4sinθcosφ)|NIII|2],PIV=(1x4)/[8(1+x4sinθcosφ)|NIV|2],PV=(1x4)/[8(1+x4sinθcosφ)|NV|2].
FI(1)=|NI|2(1x4)1[(1+x2sinθcosφ)+cosω(sinθcosφ+x2)+(1x4)1/2sinω(cosθcosξsinθsinφsinξ)],FII(1)=|NII|2[(1+sinθcosφ)+2(1x4)1/2sinω(cosθcosξ+x2sinθsinφsinξ)+(1x4)1(1sinθcosφ)sin2ω(cos2ξx4sin2ξ)],FIII(1)=|NIII|2[(1+sinθcosφ)2(1x4)1/2sinω(cosθcosξ+x2sinθsinφsinξ)+(1x4)1(1sinθcosφ)sin2ω(cos2ξx4sin2ξ)],FIV(1)=|NIV|2[(1x4)1(1+sinθcosφ)(1x2cosω)2+2(1x4)1/2sinωcosθcosξ×(1x2cosω)+(1sinθcosφ)sin2ωcos2ξ],FV(1)=|NV|2[(1x4)1(1+sinθcosφ)(1x2cosω)22(1x4)1/2sinωcosθcosξ×(1x2cosω)+(1sinθcosφ)sin2ωcos2ξ].
FI(2)=FI(1),FII(2)=|NII|2[(1x4)1(1sinθcosφ)(1x2cosω)2+2(1x4)1/2sinωcosθcosξ×(1x2cosω)+(1+sinθcosφ)sin2ωcos2ξ],FIII(2)=|NIII|2[(1x4)1(1sinθcosφ)(1x2cosω)22(1x4)1/2sinωcosθcosξ×(1x2cosω)+(1+sinθcosφ)sin2ωcos2ξ],FIV(2)=|NIV|2[(1sinθcosφ)+2(1x4)1/2sinω(cosθcosξx2sinθsinφsinξ)+(1x4)1(1+sinθcosφ)sin2ω(cos2ξ+x4sin2ξ)],FV(2)=|NV|2[(1sinθcosφ)2(1x4)1/2sinω(cosθcosξx2sinθsinφsinξ)+(1x4)1(1+sinθcosφ)sin2ω(cos2ξ+x4sin2ξ)].

Metrics