Abstract

Two simultaneous three wave mixing processes are analyzed, where an input frequency is converted to an output frequency via an intermediate stage. By employing simultaneous phase-matching and an adiabatic modulation of the nonlinear coupling strengths, the intermediate frequency is kept dark throughout the interaction while obtaining high conversion efficiency. This feat is accomplished in a manner analogous to population transfer in atomic stimulated Raman adiabatic passage. Applications include conversion between remote frequencies, e.g., mid-IR to visible, and study of electronic crystal properties in the UV absorption band.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
    [CrossRef]
  3. A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express 19, 22528–22534 (2011).
    [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  5. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
    [CrossRef]
  6. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef]
  7. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
    [CrossRef]
  8. S. Longhi, “Third-harmonic generation in quasi-phase-matched χ(2) media with missing second harmonic,” Opt. Lett. 32, 1791–1793 (2007).
    [CrossRef]
  9. G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express 20, 3613–3619 (2012).
    [CrossRef]
  10. D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, 2007).
  11. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001).
    [CrossRef]
  12. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
    [CrossRef]
  13. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
    [CrossRef]
  14. H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
    [CrossRef]
  15. T. A. Laine and S. Stenholm, “Adiabatic processes in three-level systems,” Phys. Rev. A 53, 2501–2512 (1996).
    [CrossRef]
  16. G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
    [CrossRef]
  17. G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
    [CrossRef]
  18. Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
    [CrossRef]
  19. A. H. Reshak, I. V. Kityk, and S. Auluck, “Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4single crystals: theory and experiment,” J. Phys. Chem. B 114, 16705–16712 (2010).
    [CrossRef]
  20. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [CrossRef]
  21. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
    [CrossRef]
  22. A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
    [CrossRef]
  23. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  24. A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phasematched devices in KTP and RKTP,” Opt. Mater. Express 1, 1319–1325 (2011).
    [CrossRef]
  25. M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996).
    [CrossRef]
  26. R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
    [CrossRef]
  27. S. Cabuk, “The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: first-principle study,” Cent. Eur. J. Phys. 10, 239–252 (2012).
    [CrossRef]
  28. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997).
    [CrossRef]

2012 (2)

S. Cabuk, “The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: first-principle study,” Cent. Eur. J. Phys. 10, 239–252 (2012).
[CrossRef]

G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express 20, 3613–3619 (2012).
[CrossRef]

2011 (3)

2010 (2)

Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[CrossRef]

A. H. Reshak, I. V. Kityk, and S. Auluck, “Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4single crystals: theory and experiment,” J. Phys. Chem. B 114, 16705–16712 (2010).
[CrossRef]

2009 (2)

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[CrossRef]

G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
[CrossRef]

2008 (1)

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

2007 (2)

2005 (2)

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef]

2003 (1)

2001 (1)

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001).
[CrossRef]

2000 (1)

A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
[CrossRef]

1999 (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
[CrossRef]

1997 (2)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997).
[CrossRef]

R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
[CrossRef]

1996 (3)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996).
[CrossRef]

T. A. Laine and S. Stenholm, “Adiabatic processes in three-level systems,” Phys. Rev. A 53, 2501–2512 (1996).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Anderson, M. T.

M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996).
[CrossRef]

Arie, A.

G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express 20, 3613–3619 (2012).
[CrossRef]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Auluck, S.

A. H. Reshak, I. V. Kityk, and S. Auluck, “Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4single crystals: theory and experiment,” J. Phys. Chem. B 114, 16705–16712 (2010).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef]

Bahabad, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Bergmann, K.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Boldt, P.

R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Brauchle, C.

R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
[CrossRef]

Brener, I.

Bruner, B. D.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Cabuk, S.

S. Cabuk, “The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: first-principle study,” Cent. Eur. J. Phys. 10, 239–252 (2012).
[CrossRef]

Canalias, C.

Chen, Xi

Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[CrossRef]

Chou, M. H.

Denks, V.

A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Dietrich, R.

R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
[CrossRef]

Dridi, G.

G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Dudelzak, A.

A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
[CrossRef]

Eleuch, H.

G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
[CrossRef]

Emanueli, S.

Fejer, M. M.

Fokine, M.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Ganany-Padowicz, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Gurin, S.

G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
[CrossRef]

Gury-Odelin, D.

Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[CrossRef]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Hakobyan, V.

G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
[CrossRef]

Halfmann, T.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001).
[CrossRef]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[CrossRef]

Jauslin, H. R.

G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
[CrossRef]

Ji, W.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997).
[CrossRef]

Juwiler, I.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Kashyap, R.

Kityk, I. V.

A. H. Reshak, I. V. Kityk, and S. Auluck, “Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4single crystals: theory and experiment,” J. Phys. Chem. B 114, 16705–16712 (2010).
[CrossRef]

Kivshar, Y. S.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Kuhn, A.

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[CrossRef]

Laine, T. A.

T. A. Laine and S. Stenholm, “Adiabatic processes in three-level systems,” Phys. Rev. A 53, 2501–2512 (1996).
[CrossRef]

Laurell, F.

Li, H.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997).
[CrossRef]

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Lizuain, I.

Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[CrossRef]

Longhi, S.

Meerholz, K.

R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
[CrossRef]

Morandotti, R.

Muga1, J. G.

Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[CrossRef]

Murk, V.

A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
[CrossRef]

Nagirnyi, V.

A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
[CrossRef]

Oron, D.

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Parameswaran, K. R.

Pasiskevicius, V.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phillips, M. L. F.

M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996).
[CrossRef]

Porat, G.

Proulx, P. P.

A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
[CrossRef]

Reshak, A. H.

A. H. Reshak, I. V. Kityk, and S. Auluck, “Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4single crystals: theory and experiment,” J. Phys. Chem. B 114, 16705–16712 (2010).
[CrossRef]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Ruschhaupt, A.

Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Saltiel, S. M.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Shore, B. W.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001).
[CrossRef]

Silberberg, Y.

G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express 20, 3613–3619 (2012).
[CrossRef]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Sinclair, M. B.

M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996).
[CrossRef]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Stenholm, S.

T. A. Laine and S. Stenholm, “Adiabatic processes in three-level systems,” Phys. Rev. A 53, 2501–2512 (1996).
[CrossRef]

Strömqvist, G.

Stucky, G. D.

M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996).
[CrossRef]

Suchowski, H.

G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express 20, 3613–3619 (2012).
[CrossRef]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Sukhorukov, A. A.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Tannor, D.

D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, 2007).

Tehranchi, A.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Vasilev, G. S.

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[CrossRef]

Vitanov, N. V.

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[CrossRef]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001).
[CrossRef]

Wichern, J.

R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
[CrossRef]

Zhang, X.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997).
[CrossRef]

Zhou, F.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997).
[CrossRef]

Zukauskas, A.

Annu. Rev. Phys. Chem. (1)

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[CrossRef]

Cent. Eur. J. Phys. (1)

S. Cabuk, “The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: first-principle study,” Cent. Eur. J. Phys. 10, 239–252 (2012).
[CrossRef]

Chem. Mater. (1)

M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000).
[CrossRef]

J. Phys. Chem. B (1)

A. H. Reshak, I. V. Kityk, and S. Auluck, “Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4single crystals: theory and experiment,” J. Phys. Chem. B 114, 16705–16712 (2010).
[CrossRef]

Opt. Commun. (1)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. A (4)

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

T. A. Laine and S. Stenholm, “Adiabatic processes in three-level systems,” Phys. Rev. A 53, 2501–2512 (1996).
[CrossRef]

G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009).
[CrossRef]

G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Prog. Opt. (1)

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Other (2)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Four cases described by Eq. (1): (a) two SFG processes, (b) two DFG processes, (c) SFG followed by DFG, and (d) DFG followed by SFG.

Fig. 2.
Fig. 2.

Normalized coupling coefficients of the two nonlinear processes with Gaussian modulation. Note that the ω 2  ↔  ω 3 coupling is (counterintuitively) maximized before that of ω 1  ↔  ω 2 .

Fig. 3.
Fig. 3.

Numerical simulation of the intensities of the interacting waves along the nonlinear medium, with no intermediate wave absorption, under ideal conditions and counterintuitive order modulation ( s = 5 mm ). The inset shows the intermediate wave intensity on a smaller scale.

Fig. 4.
Fig. 4.

Numerical simulation of the intensities of the interacting waves along the nonlinear medium, with no intermediate wave absorption, under ideal conditions and intuitive order modulation ( s = 5 mm ).

Fig. 5.
Fig. 5.

Numerical simulation of the intensities of the interacting waves along the nonlinear medium, with high intermediate wave absorption and under ideal conditions. The inset shows the intermediate wave intensity on a smaller scale.

Fig. 6.
Fig. 6.

Normalized coupling coefficients of the two nonlinear processes with the modulation used in Section 4. The top panels show the PRQPM poling, which was used in the simulation of Fig. 7, at the beginning, center and end of the nonlinear crystal. The colored and white stripes represent domains with positive and negative nonlinearity.

Fig. 7.
Fig. 7.

Numerical simulation of the intensities of the interacting waves along the nonlinear medium, with no intermediate wave absorption and where the crystal is modulated using phase-reversal quasi-phase-matching.

Fig. 8.
Fig. 8.

Numerical simulation of the intensities of the interacting waves along the nonlinear medium, with high intermediate wave absorption and where the crystal is modulated using phase-reversal quasi-phase-matching.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

i d d z | ψ = M | ψ ,
M = [ 0 κ 12 e i Δ k 1 z 0 κ 21 e i Δ k 1 z 0 κ 23 e i Δ k 2 z 0 κ 32 e i Δ k 2 z 0 ]
κ 0 = 0 , κ ± = ± κ 12 κ 21 + κ 23 κ 32 ,
| g 0 = 1 κ c [ κ 32 0 κ 32 ] , | g ± = 1 κ c 2 + κ s 2 [ κ 12 κ s κ 32 ] ,
θ tan 1 ( κ 12 κ 32 ) .
| g 0 = [ cos θ 0 sin θ ] .
| d g 0 d z | g ± | | κ 0 κ ± | .
| d θ d z | κ s κ c κ c 2 + κ s 2 ,
κ ˜ 12 ( z ) = κ 12 e ( z L / 2 s ) 2 / w 2 κ ˜ 32 ( z ) = κ 32 e ( z L / 2 + s ) 2 / w 2 ,
χ ( 1 ) ( ω ) ( ω ω i γ ) 1
χ ( 2 ) ( ω j , ω k ; ω j + ω k ) ( ω ω j ω k i γ ) 1 × [ ( ω ω j i γ ) 1 + ( ω ω k i γ ) 1 ] .
χ ( 2 ) ( λ 1 + λ p 1 λ 2 ) χ ( 2 ) ( 1064 nm + 1064 nm 532 nm ) = χ ( 2 ) ( λ 2 λ p 2 λ 3 ) χ ( 2 ) ( 1064 nm + 1064 nm 532 nm ) = χ ( 1 ) ( λ 2 ) χ ( 1 ) ( 1064 nm ) = n 2 ( λ 2 ) 1 n 2 ( 1064 nm ) 1 = 1.4 ,
g ( z ) = sign [ cos ( π D 1 ) + cos ( 2 π Λ 1 z ) ] × sign [ cos ( π D 2 ) + cos ( 2 π Λ 2 z ) ] .
g QPM ( z ) 2 π ( 2 D 2 1 ) sin ( π D 1 ) exp ( ± i Δ k 1 ) + 2 π ( 2 D 1 1 ) sin ( π D 2 ) exp ( ± i Δ k 2 ) .
M 2 π [ 0 ( 2 D 2 1 ) sin ( π D 1 ) κ 12 0 ( 2 D 2 1 ) sin ( π D 1 ) κ 21 0 ( 2 D 1 1 ) sin ( π D 2 ) κ 23 0 ( 2 D 1 1 ) sin ( π D 2 ) κ 32 0 ] ,

Metrics