Abstract

An inverter, in wider sense, may be defined as a transformation of an incoming state into an outgoing state in a logic-based information processing system. In this paper, a simple circuit for inverters two-valued (binary), three-valued (ternary), and four-valued (quaternary) logical systems has been designed. An outline has been given for designing of all possible 27 three-valued inverters. The circuit is designed with the help of a polarization converter and a polarization isolator only. Mathematical analysis of the polarization converters is established with Jones matrix. This circuit will be useful in a future all-optical multivalued logic-based information processing system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
    [CrossRef]
  2. M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
    [CrossRef]
  3. M. Khorasaninejad and S. S. Saini, “All optical logic gates using nonlinear effects in silicon-on- insulator waveguides,” Appl. Opt. 48, F31–F36 (2009).
    [CrossRef]
  4. D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-Peer secure multi-party numerical computation facing malicious adversaries,” Peer-to-Peer Networking Appl. 3, 129–144 (2010).
    [CrossRef]
  5. C. R. Cole, “100  Gb/s and beyond transceiver technologies,” Opt. Fiber Technol. 17, 472–479 (2011).
    [CrossRef]
  6. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Quantum computing using linear optics,” Johns Hopkins APL Tech. Dig. 25, 84–90 (2004).
  7. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007).
    [CrossRef]
  8. H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
    [CrossRef]
  9. Y. Tian, L. Zhang, R. Ji, L. Yang, and Q. Xu, “Demonstration of a directed optical encoder using microring-resonator-based optical switches,” Opt. Lett. 36, 3795–3797 (2011).
    [CrossRef]
  10. Y. Tian, L. Zhang, R. Ji, L. Yang, P. Zhou, J. Ding, H. Chen, W. Zhu, Y. Lu, Q. Fang, L. Jia, and M. Yu, “Demonstration of a directed optical decoder using two cascaded microring resonators,” Opt. Lett. 36, 3314–3316 (2011).
    [CrossRef]
  11. Y. Tian, L. Zhang, R. Ji, L. Yang, P. Zhou, H. Chen, J. Ding, W. Zhu, Y. Lu, L. Jia, Q. Fang, and M. Yu, “Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators,” Opt. Lett. 36, 1650–1652 (2011).
  12. L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35, 1620–1622 (2010).
    [CrossRef]
  13. Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19, 5244–5259 (2011).
    [CrossRef]
  14. T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
    [CrossRef]
  15. A. Fert, “The present and the future of spintronics,” Thin Solid Films 517, 2–5 (2008).
    [CrossRef]
  16. K. C. Smith, “Multiple-valued logic: a tutorial and appreciation,” IEEE Comput. 21, 17–27 (1988).
    [CrossRef]
  17. Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
    [CrossRef]
  18. Y. Imai and Y. Ohtsuka, “Optical multiple-output and multiple-valued logic operation based on fringe shifting techniques using a spatial light modulator,” Appl. Opt. 26, 274–277(1987).
    [CrossRef]
  19. S. Liu, C. Li, J. Wu, and Y. Lin, “Optoelectronic multiple-valued logic implementation,” Opt. Lett. 14, 713–715 (1989).
    [CrossRef]
  20. T. Chattopadhyay, G. K. Maity, and J. N. Roy, “Designing of all-optical tri-state logic system with the help of optical nonlinear material,” J. Nonlinear Opt. Phys. Mater. 17, 315–328(2008).
    [CrossRef]
  21. T. Chattopadhyay, C. Taraphdar, and J. N. Roy, “Quaternary Galois field adder based all-optical multivalued logic circuits,” Appl. Opt. 48, E35–E44 (2009).
    [CrossRef]
  22. T. Chattopadhyay and J. N. Roy, “An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder,” J. Opt. A 11, 075501 (2009).
    [CrossRef]
  23. T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch,” Opt. Commun. 284, 2755–2762 (2011).
    [CrossRef]
  24. C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Designing of an all-optical scheme for single input Ternary logical operations,” Optik 122, 33–36 (2011).
    [CrossRef]
  25. E. A. M. Fagotto and M. L. F. Abbade, “All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates,” Opt. Commun. 283, 1102–1109 (2010).
    [CrossRef]
  26. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986).
    [CrossRef]
  27. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26, 2720–2725 (1987).
    [CrossRef]
  28. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing, polarization-based binary logic gates and optical processors,” Opt. Express 14, 9879–9895 (2006).
    [CrossRef]
  29. T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary universal inverter and designing of multi-valued flip-flop,” Opt. Eng. 49, 035201 (2010).
    [CrossRef]
  30. K. Kieling, D. Gross, and J. Eisert, “Minimal resources for linear optical one-way computing,” J. Opt. Soc. Am. B 24, 184–188 (2007).
    [CrossRef]
  31. A. A. S. Awwal, M. A. Karim, and A. K. Cherri, “Polarization-encoded optical shadow-casting scheme: design of multi-output trinary combinational logic units,” Appl. Opt. 26, 4814–4818 (1987).
    [CrossRef]
  32. Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
    [CrossRef]
  33. Y. Jin, H. He, and Y. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
    [CrossRef]
  34. J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
    [CrossRef]
  35. Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 728231 (2009).
  36. R. Cunha, H. Boudinov, and L. Carro, “Quaternary look-up tables using voltage-mode CMOS logic design,” in Proceedings of the 37th International Symposium of Multiple-Valued Logic (ISMVL’07) (IEEE, 2007), p. 56.
  37. http://www.ternarylogic.com /ternary logicInverterswl.pdf .
  38. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).
  39. J. Tanida and Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
    [CrossRef]
  40. K. Lu and B. E. A. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Opt. 30, 2354–2362 (1991).
    [CrossRef]
  41. G. Shvets, “Optical polarizer/isolator based on a rectangular waveguide with helical grooves,” Appl. Phys. Lett. 89, 141127 (2006).
    [CrossRef]
  42. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
    [CrossRef]

2011 (9)

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

C. R. Cole, “100  Gb/s and beyond transceiver technologies,” Opt. Fiber Technol. 17, 472–479 (2011).
[CrossRef]

Y. Tian, L. Zhang, R. Ji, L. Yang, and Q. Xu, “Demonstration of a directed optical encoder using microring-resonator-based optical switches,” Opt. Lett. 36, 3795–3797 (2011).
[CrossRef]

Y. Tian, L. Zhang, R. Ji, L. Yang, P. Zhou, J. Ding, H. Chen, W. Zhu, Y. Lu, Q. Fang, L. Jia, and M. Yu, “Demonstration of a directed optical decoder using two cascaded microring resonators,” Opt. Lett. 36, 3314–3316 (2011).
[CrossRef]

Y. Tian, L. Zhang, R. Ji, L. Yang, P. Zhou, H. Chen, J. Ding, W. Zhu, Y. Lu, L. Jia, Q. Fang, and M. Yu, “Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators,” Opt. Lett. 36, 1650–1652 (2011).

Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19, 5244–5259 (2011).
[CrossRef]

T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch,” Opt. Commun. 284, 2755–2762 (2011).
[CrossRef]

C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Designing of an all-optical scheme for single input Ternary logical operations,” Optik 122, 33–36 (2011).
[CrossRef]

2010 (7)

E. A. M. Fagotto and M. L. F. Abbade, “All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates,” Opt. Commun. 283, 1102–1109 (2010).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary universal inverter and designing of multi-valued flip-flop,” Opt. Eng. 49, 035201 (2010).
[CrossRef]

Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35, 1620–1622 (2010).
[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[CrossRef]

D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-Peer secure multi-party numerical computation facing malicious adversaries,” Peer-to-Peer Networking Appl. 3, 129–144 (2010).
[CrossRef]

2009 (4)

M. Khorasaninejad and S. S. Saini, “All optical logic gates using nonlinear effects in silicon-on- insulator waveguides,” Appl. Opt. 48, F31–F36 (2009).
[CrossRef]

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 728231 (2009).

T. Chattopadhyay, C. Taraphdar, and J. N. Roy, “Quaternary Galois field adder based all-optical multivalued logic circuits,” Appl. Opt. 48, E35–E44 (2009).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder,” J. Opt. A 11, 075501 (2009).
[CrossRef]

2008 (2)

T. Chattopadhyay, G. K. Maity, and J. N. Roy, “Designing of all-optical tri-state logic system with the help of optical nonlinear material,” J. Nonlinear Opt. Phys. Mater. 17, 315–328(2008).
[CrossRef]

A. Fert, “The present and the future of spintronics,” Thin Solid Films 517, 2–5 (2008).
[CrossRef]

2007 (4)

J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007).
[CrossRef]

H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

K. Kieling, D. Gross, and J. Eisert, “Minimal resources for linear optical one-way computing,” J. Opt. Soc. Am. B 24, 184–188 (2007).
[CrossRef]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

2006 (2)

G. Shvets, “Optical polarizer/isolator based on a rectangular waveguide with helical grooves,” Appl. Phys. Lett. 89, 141127 (2006).
[CrossRef]

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing, polarization-based binary logic gates and optical processors,” Opt. Express 14, 9879–9895 (2006).
[CrossRef]

2004 (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Quantum computing using linear optics,” Johns Hopkins APL Tech. Dig. 25, 84–90 (2004).

2003 (1)

Y. Jin, H. He, and Y. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

1991 (1)

1989 (1)

1988 (1)

K. C. Smith, “Multiple-valued logic: a tutorial and appreciation,” IEEE Comput. 21, 17–27 (1988).
[CrossRef]

1987 (3)

1986 (3)

J. Tanida and Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
[CrossRef]

A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986).
[CrossRef]

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

Abbade, M. L. F.

E. A. M. Fagotto and M. L. F. Abbade, “All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates,” Opt. Commun. 283, 1102–1109 (2010).
[CrossRef]

Awwal, A. A. S.

Bickson, D.

D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-Peer secure multi-party numerical computation facing malicious adversaries,” Peer-to-Peer Networking Appl. 3, 129–144 (2010).
[CrossRef]

Boudinov, H.

R. Cunha, H. Boudinov, and L. Carro, “Quaternary look-up tables using voltage-mode CMOS logic design,” in Proceedings of the 37th International Symposium of Multiple-Valued Logic (ISMVL’07) (IEEE, 2007), p. 56.

Carro, L.

R. Cunha, H. Boudinov, and L. Carro, “Quaternary look-up tables using voltage-mode CMOS logic design,” in Proceedings of the 37th International Symposium of Multiple-Valued Logic (ISMVL’07) (IEEE, 2007), p. 56.

Cauilfield, H. J.

H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[CrossRef]

Chattopadhyay, T.

T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
[CrossRef]

C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Designing of an all-optical scheme for single input Ternary logical operations,” Optik 122, 33–36 (2011).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch,” Opt. Commun. 284, 2755–2762 (2011).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary universal inverter and designing of multi-valued flip-flop,” Opt. Eng. 49, 035201 (2010).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder,” J. Opt. A 11, 075501 (2009).
[CrossRef]

T. Chattopadhyay, C. Taraphdar, and J. N. Roy, “Quaternary Galois field adder based all-optical multivalued logic circuits,” Appl. Opt. 48, E35–E44 (2009).
[CrossRef]

T. Chattopadhyay, G. K. Maity, and J. N. Roy, “Designing of all-optical tri-state logic system with the help of optical nonlinear material,” J. Nonlinear Opt. Phys. Mater. 17, 315–328(2008).
[CrossRef]

Chen, H.

Chen, P.

Cherri, A. K.

Cole, C. R.

C. R. Cole, “100  Gb/s and beyond transceiver technologies,” Opt. Fiber Technol. 17, 472–479 (2011).
[CrossRef]

Cunha, R.

R. Cunha, H. Boudinov, and L. Carro, “Quaternary look-up tables using voltage-mode CMOS logic design,” in Proceedings of the 37th International Symposium of Multiple-Valued Logic (ISMVL’07) (IEEE, 2007), p. 56.

Decker, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

Ding, G. T.

Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Ding, J.

Dolev, D.

D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-Peer secure multi-party numerical computation facing malicious adversaries,” Peer-to-Peer Networking Appl. 3, 129–144 (2010).
[CrossRef]

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[CrossRef]

Eisert, J.

Fagotto, E. A. M.

E. A. M. Fagotto and M. L. F. Abbade, “All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates,” Opt. Commun. 283, 1102–1109 (2010).
[CrossRef]

Fang, Q.

Fert, A.

A. Fert, “The present and the future of spintronics,” Thin Solid Films 517, 2–5 (2008).
[CrossRef]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Quantum computing using linear optics,” Johns Hopkins APL Tech. Dig. 25, 84–90 (2004).

Freymann, G. V.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

Gross, D.

Hardy, J.

J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007).
[CrossRef]

H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

He, H.

Y. Jin, H. He, and Y. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

Hinds, E. A.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

Ichioka, Y.

Imai, Y.

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Quantum computing using linear optics,” Johns Hopkins APL Tech. Dig. 25, 84–90 (2004).

Ji, R.

Jia, L.

Jiang, Z.

Jin, Y.

Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 728231 (2009).

Y. Jin, H. He, and Y. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

Karim, M. A.

Khorasaninejad, M.

Kieling, K.

Kohnen, M.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

Li, C.

Li, X.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Lin, Y.

Linden, S.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

Liu, J.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Liu, S.

Liu, Y.

Lohmann, A. W.

Lu, K.

Lu, Y.

Lü, Y.

Y. Jin, H. He, and Y. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

Maity, G. K.

T. Chattopadhyay, G. K. Maity, and J. N. Roy, “Designing of all-optical tri-state logic system with the help of optical nonlinear material,” J. Nonlinear Opt. Phys. Mater. 17, 315–328(2008).
[CrossRef]

Nakamura, T.

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

Nyman, R. A.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

Ohtsuka, Y.

Pak, K.

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

Peng, J. J.

Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 728231 (2009).

Petrov, P. G.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

Pinkas, B.

D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-Peer secure multi-party numerical computation facing malicious adversaries,” Peer-to-Peer Networking Appl. 3, 129–144 (2010).
[CrossRef]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Quantum computing using linear optics,” Johns Hopkins APL Tech. Dig. 25, 84–90 (2004).

Qian, L.

H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

Reinman, T.

D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-Peer secure multi-party numerical computation facing malicious adversaries,” Peer-to-Peer Networking Appl. 3, 129–144 (2010).
[CrossRef]

Roy, J. N.

C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Designing of an all-optical scheme for single input Ternary logical operations,” Optik 122, 33–36 (2011).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch,” Opt. Commun. 284, 2755–2762 (2011).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary universal inverter and designing of multi-valued flip-flop,” Opt. Eng. 49, 035201 (2010).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder,” J. Opt. A 11, 075501 (2009).
[CrossRef]

T. Chattopadhyay, C. Taraphdar, and J. N. Roy, “Quaternary Galois field adder based all-optical multivalued logic circuits,” Appl. Opt. 48, E35–E44 (2009).
[CrossRef]

T. Chattopadhyay, G. K. Maity, and J. N. Roy, “Designing of all-optical tri-state logic system with the help of optical nonlinear material,” J. Nonlinear Opt. Phys. Mater. 17, 315–328(2008).
[CrossRef]

Saini, S. S.

Saleh, B. E. A.

Shamir, J.

Shen, Y. F.

Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Shen, Z. Y.

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 728231 (2009).

Shvets, G.

G. Shvets, “Optical polarizer/isolator based on a rectangular waveguide with helical grooves,” Appl. Phys. Lett. 89, 141127 (2006).
[CrossRef]

Smith, K. C.

K. C. Smith, “Multiple-valued logic: a tutorial and appreciation,” IEEE Comput. 21, 17–27 (1988).
[CrossRef]

Soref, R.

Soref, R. A.

H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

Su, X.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Succo, M.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

Tanida, J.

Taraphdar, C.

C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Designing of an all-optical scheme for single input Ternary logical operations,” Optik 122, 33–36 (2011).
[CrossRef]

T. Chattopadhyay, C. Taraphdar, and J. N. Roy, “Quaternary Galois field adder based all-optical multivalued logic circuits,” Appl. Opt. 48, E35–E44 (2009).
[CrossRef]

Thiel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

Tian, Y.

Tokuda, Y.

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

Trupke, M.

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

Wegener, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

Wu, J.

Xu, Q.

Yang, J.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Yang, L.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).

Yasuda, Y.

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).

Yoshida, A.

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

Yu, M.

Yue, D. J.

Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Zaghloul, A. R. M.

Zaghloul, Y. A.

Zaima, S.

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

Zavalin, A.

H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

Zhang, L.

Zhou, P.

Zhu, W.

Adv. Mater. (1)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. V. Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[CrossRef]

Appl. Opt. (9)

Appl. Phys. Lett. (1)

G. Shvets, “Optical polarizer/isolator based on a rectangular waveguide with helical grooves,” Appl. Phys. Lett. 89, 141127 (2006).
[CrossRef]

IEEE Comput. (1)

K. C. Smith, “Multiple-valued logic: a tutorial and appreciation,” IEEE Comput. 21, 17–27 (1988).
[CrossRef]

IEEE J. Solid-State Circuits (1)

Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, “Realization of quaternary logic circuits by n-channel MOS devices,” IEEE J. Solid-State Circuits 21, 162–168(1986).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

T. Chattopadhyay, G. K. Maity, and J. N. Roy, “Designing of all-optical tri-state logic system with the help of optical nonlinear material,” J. Nonlinear Opt. Phys. Mater. 17, 315–328(2008).
[CrossRef]

J. Opt. A (1)

T. Chattopadhyay and J. N. Roy, “An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder,” J. Opt. A 11, 075501 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Johns Hopkins APL Tech. Dig. (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Quantum computing using linear optics,” Johns Hopkins APL Tech. Dig. 25, 84–90 (2004).

Nat. Photonics (2)

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).
[CrossRef]

M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Photonics 5, 35–38 (2011).
[CrossRef]

Opt. Commun. (3)

H. J. Cauilfield, R. A. Soref, L. Qian, A. Zavalin, and J. Hardy, “Generalized optical logic elements—GOLEs,” Opt. Commun. 271, 365–376 (2007).
[CrossRef]

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch,” Opt. Commun. 284, 2755–2762 (2011).
[CrossRef]

E. A. M. Fagotto and M. L. F. Abbade, “All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates,” Opt. Commun. 283, 1102–1109 (2010).
[CrossRef]

Opt. Eng. (1)

T. Chattopadhyay and J. N. Roy, “Polarization encoded all-optical quaternary universal inverter and designing of multi-valued flip-flop,” Opt. Eng. 49, 035201 (2010).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

C. R. Cole, “100  Gb/s and beyond transceiver technologies,” Opt. Fiber Technol. 17, 472–479 (2011).
[CrossRef]

Opt. Laser Technol. (1)

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Opt. Lett. (5)

Optik (1)

C. Taraphdar, T. Chattopadhyay, and J. N. Roy, “Designing of an all-optical scheme for single input Ternary logical operations,” Optik 122, 33–36 (2011).
[CrossRef]

Peer-to-Peer Networking Appl. (1)

D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-Peer secure multi-party numerical computation facing malicious adversaries,” Peer-to-Peer Networking Appl. 3, 129–144 (2010).
[CrossRef]

Proc. SPIE (1)

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 728231 (2009).

Sci. China Ser. F (2)

Y. Jin, Y. F. Shen, J. J. Peng, G. T. Ding, and D. J. Yue, “Principles and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Y. Jin, H. He, and Y. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

Thin Solid Films (1)

A. Fert, “The present and the future of spintronics,” Thin Solid Films 517, 2–5 (2008).
[CrossRef]

Other (3)

R. Cunha, H. Boudinov, and L. Carro, “Quaternary look-up tables using voltage-mode CMOS logic design,” in Proceedings of the 37th International Symposium of Multiple-Valued Logic (ISMVL’07) (IEEE, 2007), p. 56.

http://www.ternarylogic.com /ternary logicInverterswl.pdf .

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2006).

Supplementary Material (3)

» Media 1: MP4 (507 KB)     
» Media 2: MP4 (614 KB)     
» Media 3: MP4 (953 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Working mechanism of liquid crystal light valve (LCLV) [39]. (a) When no light signal is incident on the write side, (b) when light signal is present at the write side.

Fig. 2.
Fig. 2.

Horizontal polarizer isolator (HPI). W , write beam; HWP, half-wave plate with azimuth angle ρ = 45 ° (PC-1); LCLV, liquid crystal light valve; PBS, polarizing beam splitter; M, plane mirror; In, Light input; Out, Light output. (Media 1)

Fig. 3.
Fig. 3.

Vertical polarizer isolator (VPI). (Media 2)

Fig. 4.
Fig. 4.

Right circularly polarizer isolator (RCPI). QWP, quarter-wave plate with azimuth angle ρ = 45 ° (PC-2). (Media 3)

Fig. 5.
Fig. 5.

Schematic diagram of this 3D spiral photonic crystal [42]. (a) Top view, (b) right-handed dielectric spiral, through which only RCPL can pass, and (c) left-handed dielectric spiral, through which only LCPL can pass.

Fig. 6.
Fig. 6.

Block diagram of optical inverter circuit. BE, beam expander; PIM, polarization isolator mask; PCM, polarization converter matrix; BC, beam combiner.

Fig. 7.
Fig. 7.

Circuit diagram for binary inverter.

Fig. 8.
Fig. 8.

Circuit diagram for ternary universal inverter (first type).

Fig. 9.
Fig. 9.

Circuit diagram for ternary universal inverter (second type).

Fig. 10.
Fig. 10.

Circuit diagram for QUI.

Tables (3)

Tables Icon

Table 1. Truth Table for TUI of First Type and Second Type

Tables Icon

Table 2. One-Input Ternary Inverters (radix N = 3 ), Input = [ 0 1 2 ]

Tables Icon

Table 3. Truth Table for QUI

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

( ¬ x ) 3 = ( x + 1 ) modulo 3 .
( ¬ x ) 3 = ( x + 2 ) modulo 3 .
[ 0 1 2 ] [ 1 2 0 ] [ 1 2 0 ] [ 1 2 0 ] [ 2 0 1 ] [ 1 2 0 ] [ 0 1 2 ] ,
[ 0 1 2 ] [ 2 0 1 ] [ 2 0 1 ] [ 2 0 1 ] [ 1 2 0 ] [ 2 0 1 ] [ 0 1 2 ] .
( ¬ x ) 4 = { ( x + 1 ) modulo 4 ; if x = 0 ( x + 2 ) modulo 4 ; otherwise .
[ 0 1 2 3 ] [ 1 3 0 2 ] [ 1 3 0 2 ] [ 1 3 0 2 ] [ 3 2 1 0 ] [ 1 3 0 2 ] [ 2 0 3 1 ] [ 1 3 0 2 ] [ 0 1 2 3 ] .
J H = ( cos 2 ρ sin 2 ρ sin 2 ρ cos 2 ρ ) ,
J H , 45 ° = ( 0 1 1 0 ) ,
J H , 45 ° E 0 = ( 0 1 1 0 ) ( 1 0 ) = ( 0 1 ) = E 1 .
J H , 45 ° E 2 ( 0 1 1 0 ) · 1 2 ( 1 i ) = 1 2 ( i 1 ) = E 3 .
J Q = ( e i π / 4 cos 2 ρ + e i π / 4 sin 2 ρ 2 . i sin ρ cos ρ 2 . i sin ρ cos ρ e i π / 4 cos 2 ρ + e i π / 4 sin 2 ρ ) ,
J Q , 45 ° = 1 2 ( 1 i i 1 ) ,
J Q , 45 ° E 0 = 1 2 ( 1 i i 1 ) · ( 1 0 ) = 1 2 ( 1 i ) = E 2 .
J Q , 135 ° E 2 = 1 2 ( 1 i i 1 ) · 1 2 ( 1 i ) = ( 1 0 ) = E 0 .
J x · E 0 = ( 1 0 0 0 ) · ( 1 0 ) = ( 1 0 ) = E 0 = HPL and J y · E 0 = ( 0 0 0 1 ) · ( 1 0 ) = ( 0 0 ) = no light .
J x · E 1 = ( 1 0 0 0 ) · ( 0 1 ) = ( 0 0 ) = no light , and J y · E 1 = ( 0 0 0 1 ) · ( 0 1 ) = ( 0 1 ) = E 1 = VPL .
E W = J M · J M · M y · E In ,
E Out = J H , 45 ° · M y · J H , 45 ° · J LCLV · M x · E In ,
E W = J M · M x · E In ,
E Out = M y · J H , 45 ° · J LCLV · J H , 45 ° · J M · M y · E In .
E W = J M · J M · M y · E In ,
E Out = J Q , 45 ° · J H , 45 ° · M y · J LCLV · M x · E In .

Metrics