Abstract

Second order, χ(2) nonlinear mixing of optical and terahertz (THz) radiation is enhanced by phase matching by the spatial distribution of THz standing waves in a slab waveguide. The interference pattern due to selectively excited waveguide modes is thus detected and modeled along a crystal slab waveguide.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using soa nonlinearities,” IEEE Commun. Mag. 36(12), 56–61 (1998).
    [CrossRef]
  2. M. Sherwin, S. Carter, and J. Cerne, “Optical response of semiconductor nanostructures in terahertz fields generated by electrostatic free-electron lasers,” in Terahertz Spectroscopy, Vol. 20077041, S. Dexheimer, ed. (CRC, 2007), pp. 205–268.
  3. S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
    [CrossRef]
  4. D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
    [CrossRef]
  5. F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.
  6. J. van Tilborg, D. J. Bakker, N. H. Matlis, and W. P. Leemans, “Spectral sidebands on a narrow-bandwidth optical probe as a broad-bandwidth thz pulse diagnostic,” Opt. Express 19, 26634–26644 (2011).
    [CrossRef]
  7. T. Feil, and S. J. Allen, “Terahertz/optical sum and difference frequency generation in liquids,” Appl. Phys. Lett. 98, 061106 (2011).
    [CrossRef]
  8. C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
    [CrossRef]
  9. P. Debye and F. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
    [CrossRef]
  10. Y. R. Shen and N. Bloember, “Theory of stimulated brillouin and raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
    [CrossRef]
  11. E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [CrossRef]
  12. J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138, A1599–A1606 (1965).
    [CrossRef]
  13. O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
    [CrossRef]
  14. Gorachand and Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [CrossRef]
  15. The THz polarization along the x-direction restricts us to TM modes.
  16. The pattern is not symmetric with respect to the width of the crystal since the grating position was not symmetric with respect to the center of the crystal.

2011 (2)

2009 (1)

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

2008 (1)

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

2007 (1)

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

2000 (1)

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

1999 (1)

Gorachand and Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

1998 (1)

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using soa nonlinearities,” IEEE Commun. Mag. 36(12), 56–61 (1998).
[CrossRef]

1972 (1)

O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
[CrossRef]

1965 (2)

J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138, A1599–A1606 (1965).
[CrossRef]

Y. R. Shen and N. Bloember, “Theory of stimulated brillouin and raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

1932 (1)

P. Debye and F. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef]

Allen, S. J.

T. Feil, and S. J. Allen, “Terahertz/optical sum and difference frequency generation in liquids,” Appl. Phys. Lett. 98, 061106 (2011).
[CrossRef]

Alton, J.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Attanasio, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Bakker, D. J.

Barbieri, S.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Bauerschmidt, S.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Beere, H. E.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Belkin, M. A.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Belyanin, A.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Bloember, N.

Y. R. Shen and N. Bloember, “Theory of stimulated brillouin and raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

Bossi, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Capasso, F.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Carter, S.

M. Sherwin, S. Carter, and J. Cerne, “Optical response of semiconductor nanostructures in terahertz fields generated by electrostatic free-electron lasers,” in Terahertz Spectroscopy, Vol. 20077041, S. Dexheimer, ed. (CRC, 2007), pp. 205–268.

Cerne, J.

M. Sherwin, S. Carter, and J. Cerne, “Optical response of semiconductor nanostructures in terahertz fields generated by electrostatic free-electron lasers,” in Terahertz Spectroscopy, Vol. 20077041, S. Dexheimer, ed. (CRC, 2007), pp. 205–268.

de Rossi, A.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Debye, P.

P. Debye and F. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef]

Dhillon, S. S.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Dohler, G.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Faist, J.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Feil, T.

T. Feil, and S. J. Allen, “Terahertz/optical sum and difference frequency generation in liquids,” Appl. Phys. Lett. 98, 061106 (2011).
[CrossRef]

Fischer, M.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Fritz, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Geiser, M.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Ghosh,

Gorachand and Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138, A1599–A1606 (1965).
[CrossRef]

Gorachand,

Gorachand and Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Hallemeier, P.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Kelly, T.

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using soa nonlinearities,” IEEE Commun. Mag. 36(12), 56–61 (1998).
[CrossRef]

Kissa, K.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Klitmov, I. M.

O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
[CrossRef]

Lafaw, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Leemans, W. P.

Leuchs, G.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Lobskii, M. I.

O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
[CrossRef]

Maack, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Malzer, S.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Marcenac, D.

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using soa nonlinearities,” IEEE Commun. Mag. 36(12), 56–61 (1998).
[CrossRef]

Matlis, N. H.

Matsko, A. B.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

McBrien, G.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Murphy, E.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Nesset, D.

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using soa nonlinearities,” IEEE Commun. Mag. 36(12), 56–61 (1998).
[CrossRef]

Ovchinnikov, V. M.

O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
[CrossRef]

Pflügl, C.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Pirogov, Y. A.

O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
[CrossRef]

Preu, S.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Ritchie, D. A.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Savchenkov, A. A.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

Schwefel, H.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Schwefel, H. G. L.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

Sears, F.

P. Debye and F. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef]

Sedlmeir, F.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Shen, Y. R.

Y. R. Shen and N. Bloember, “Theory of stimulated brillouin and raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

Sherwin, M.

M. Sherwin, S. Carter, and J. Cerne, “Optical response of semiconductor nanostructures in terahertz fields generated by electrostatic free-electron lasers,” in Terahertz Spectroscopy, Vol. 20077041, S. Dexheimer, ed. (CRC, 2007), pp. 205–268.

Sirtori, C.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Strekalov, D.

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

Strekalov, D. V.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

van Tilborg, J.

Vlokh, O. G.

O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
[CrossRef]

Wang, L. J.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

Wang, Q. J.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Wittmann, A.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

Wooten, E.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Yi-Yan, A.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Yu, N.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

T. Feil, and S. J. Allen, “Terahertz/optical sum and difference frequency generation in liquids,” Appl. Phys. Lett. 98, 061106 (2011).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93, 161110 (2008).
[CrossRef]

IEEE Commun. Mag. (1)

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using soa nonlinearities,” IEEE Commun. Mag. 36(12), 56–61 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

J. Appl. Spectrosc. (1)

O. G. Vlokh, I. M. Klitmov, M. I. Lobskii, V. M. Ovchinnikov, and Y. A. Pirogov, “Electrooptical properties of quartz crystals in static fields,” J. Appl. Spectrosc. 16, 804–807 (1972).
[CrossRef]

Nat. Photonics (1)

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1, 411–415 (2007).
[CrossRef]

Opt. Commun. (1)

Gorachand and Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. (2)

Y. R. Shen and N. Bloember, “Theory of stimulated brillouin and raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[CrossRef]

J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138, A1599–A1606 (1965).
[CrossRef]

Phys. Rev. A (1)

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A 80, 033810 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

P. Debye and F. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef]

Other (4)

F. Sedlmeir, H. Schwefel, D. Strekalov, S. Bauerschmidt, S. Preu, S. Malzer, G. Dohler, and G. Leuchs, “Efficient optical up-conversion by coherent sum-frequency generation for highly sensitive terahertz detection,” in THz Systems and Components (CC4) (The European Conference on Lasers and Electro-Optics (CLEO/EUROPE 2011) and European Quantum Electronics Conference (EQEC 2011), Optical Society of America, 2011), CC4_2.

M. Sherwin, S. Carter, and J. Cerne, “Optical response of semiconductor nanostructures in terahertz fields generated by electrostatic free-electron lasers,” in Terahertz Spectroscopy, Vol. 20077041, S. Dexheimer, ed. (CRC, 2007), pp. 205–268.

The THz polarization along the x-direction restricts us to TM modes.

The pattern is not symmetric with respect to the width of the crystal since the grating position was not symmetric with respect to the center of the crystal.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Model drawing of the experimental setup. Inset: phase-matched wavevectors.

Fig. 2.
Fig. 2.

(a) Sideview of the experimental geometry. (b) Modulated THz field at the grating surface represented by the propagating modes alone and by a larger set of 50 Fourier coefficients. The field is calculated in a 0.5 mm thick quartz crystal for a THz frequency of 50.5cm1 and a 103 μm grating.

Fig. 3.
Fig. 3.

Top: real part of the electric field in the xz plane resulting from the interference of excited propagating quartz waveguide modes reflected from the top of the quartz crystal. The parameters are the same as given in the caption to Fig. 2(b). The lower part shows the DFG signal calculated from this pattern according to Eq. (5) and the corresponding measurement with identical parameters.

Fig. 4.
Fig. 4.

Measurement and modeling of a DFG sideband generated in a 0.5 mm thick quartz crystal at a THz frequency of 84cm1 with a 233 μm grating along the 2 mm height of the crystal.

Fig. 5.
Fig. 5.

Measurement of a DFG sideband in a 0.5 mm thick quartz crystal along the 2 mm height of the crystal. The THz frequency was 0.615 THz, which is ideally phase-matched with a 69.5 μm grating. The theoretical curve calculates the corresponding signal from the electric field distribution of the propagating modes.

Fig. 6.
Fig. 6.

Top: real part of the electric field of the propagating THz modes in the xz plane resulting from the interference of excited propagating quartz waveguide modes reflected from the top of the quartz crystal. The lower part shows the sideband signal calculated from this pattern according to Eq. (5) and the corresponding measurement with identical parameters.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2πλg+2πλ0n0=2πλn.
P=k2χ(2)2πPTP08cnTϵ0exp(1/8x02(kg+k0k)2),
Mj=cos(jπx/w)exp(ikz,jz)jodd
Mj=sin(jπx/w)exp(ikz,jz)jeven,
P|d/2d/2Ex,THz(x,z)exp(i(k0k)x)dx|2.

Metrics