Abstract

We present an atomic-state entangler with single atoms trapped in separated low-Q cavities, a coherent optical pulse as a quantum channel, a photon detector that only distinguishes the vacuum and nonvacuum states, and basic optical elements based on the input–output process in the intermediate coupling region with a higher probability and fidelity. The atomic-state entangler is meaningful because it does not need a strong coupling cavity and a single-photon source and could be feasible for large-scale quantum computation and quantum communication in the future. Based on this entangler, quantum information nonlocal transfer without classical communication, the quantum controlled-NOT gate, the four-particle |χ state, the N-particle Greenberger-Horne-Zeilinger (GHZ) state, and cluster-state generation can be realized completely, which is useful in large-scale and nonlocal quantum information processing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709–711 (2002).
    [CrossRef]
  2. A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
    [CrossRef]
  3. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
    [CrossRef]
  4. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
    [CrossRef]
  5. J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).
  6. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
    [CrossRef]
  7. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
    [CrossRef]
  8. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
    [CrossRef]
  9. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [CrossRef]
  10. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
    [CrossRef]
  11. J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
    [CrossRef]
  12. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
    [CrossRef]
  13. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
    [CrossRef]
  14. N. B. An and J. Kim, “Cluster-type entangled coherent states: generation and application,” Phys. Rev. A 80, 042316 (2009).
    [CrossRef]
  15. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
    [CrossRef]
  16. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
    [CrossRef]
  17. F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
    [CrossRef]
  18. F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
    [CrossRef]
  19. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  20. Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011).
    [CrossRef]
  21. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature (London) 402, 390–393 (1999).
    [CrossRef]
  22. X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
    [CrossRef]
  23. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
    [CrossRef]
  24. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [CrossRef]
  25. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
    [CrossRef]
  26. S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
    [CrossRef]
  27. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef]
  28. B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
    [CrossRef]
  29. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
    [CrossRef]
  30. L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
    [CrossRef]

2012

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

2011

Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011).
[CrossRef]

2010

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

2009

N. B. An and J. Kim, “Cluster-type entangled coherent states: generation and application,” Phys. Rev. A 80, 042316 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

2008

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef]

2007

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

2006

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[CrossRef]

2005

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[CrossRef]

2004

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

2003

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
[CrossRef]

2002

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709–711 (2002).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

2001

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

2000

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

1999

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature (London) 402, 390–393 (1999).
[CrossRef]

1998

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

Ahmadi, P.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

An, N. B.

N. B. An and J. Kim, “Cluster-type entangled coherent states: generation and application,” Phys. Rev. A 80, 042316 (2009).
[CrossRef]

Aoki, Takao

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Barnes, W. L.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Bayer, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Beugnon, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

Blatt, R.

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

Browaeys, A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

Chapman, M. S.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Chen, Q.

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Cho, J.

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Chuang, I. L.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature (London) 402, 390–393 (1999).
[CrossRef]

Darqui, B.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

Dayan, B.

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Dingjan, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

DiVincenzo, D. P.

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

Duan, L. M.

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Fafard, S.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Feng, M.

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Feng, X. L.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

Forchel, A.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Fortier, K. M.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Gao, J.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Gasparoni, S.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
[CrossRef]

Gehring, G. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Gibbons, M. J.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Gottesman, D.

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature (London) 402, 390–393 (1999).
[CrossRef]

Grangier, P.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

Guo, G. C.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Guo, G. P.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef]

Han, Z. F.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Hawrylak, P.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Hijlkema, M.

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

Hinzer, K.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Hobson, P. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Jones, M. P. A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

Kielpinski, D.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709–711 (2002).
[CrossRef]

Kim, J.

N. B. An and J. Kim, “Cluster-type entangled coherent states: generation and application,” Phys. Rev. A 80, 042316 (2009).
[CrossRef]

Kim, S. Y.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

Kimble, H. J.

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

Korkusinski, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Kuang, L. M.

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

Ladd, T. D.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

Lee, H. W.

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Leibfried, D.

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

Li, Y. N.

Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011).
[CrossRef]

Lidzey, D. G.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Lin, X. M.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Lin, Z. R.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef]

Loss, D.

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

Mei, F.

Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

Messin, G.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Monroe, C.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709–711 (2002).
[CrossRef]

Mundt, A.

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

Munro, W. J.

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[CrossRef]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

Nemoto, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[CrossRef]

Nori, F.

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).

Numann, S.

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

Oh, C. H.

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Ostby, E. P.

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Pan, J. W.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
[CrossRef]

Parkins, A. S.

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Rempe, G.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

Rohde, F.

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

Roos, C. F.

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

Sanaka, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

Schmidt-Kaler, F.

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

Skolnick, M. S.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Steane, A.

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

Stern, O.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Stevens, D.

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Tang, S. Q.

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

Tu, T.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef]

Ursin, R.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
[CrossRef]

Vahala, K. J.

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

van Loock, P.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[CrossRef]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Walker, S.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Wang, B.

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[CrossRef]

Wang, X. W.

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

Wang, Z. Y.

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

Wasilewski, Z. R.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Weber, B.

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

Webster, S. C.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

Weihs, G.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
[CrossRef]

Whittaker, D. M.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

Wineland, D. J.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709–711 (2002).
[CrossRef]

Xiao, Y. F.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Xie, L. J.

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

Yamaguchi, F.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

Yamamoto, Y.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[CrossRef]

Yang, Y.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

You, J. Q.

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).

Yu, Y. F.

Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

Zeilinger, A.

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
[CrossRef]

Zhang, D. Y.

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

Zhang, Z. M.

Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

Zhu, F. Y.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef]

Zhu, S. L.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Appl. Phys. Lett.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[CrossRef]

Chin. Phys. B

Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011).
[CrossRef]

Europhys. Lett.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Nature (London)

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006).
[CrossRef]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709–711 (2002).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003).
[CrossRef]

D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature (London) 402, 390–393 (1999).
[CrossRef]

New J. Phys.

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[CrossRef]

Phys. Rev. A

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010).
[CrossRef]

N. B. An and J. Kim, “Cluster-type entangled coherent states: generation and application,” Phys. Rev. A 80, 042316 (2009).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000).
[CrossRef]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[CrossRef]

X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[CrossRef]

Phys. Rev. B

J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).

Phys. Rev. Lett.

Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[CrossRef]

S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005).
[CrossRef]

Science

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[CrossRef]

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef]

Other

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic setup to implement a phase change in a coherent beam induced by input–output process. Cir means circulator. The top of the figure is the level structure of the atom. g is the coupling induced by a cavity field.

Fig. 2.
Fig. 2.

Atomic state entangler in low-Q cavities; BSi (i=1, 2) denote the 5050 beam splitter, which transforms |α|β to |αβ2|α+β2. Mj (j=1, 2) are mirrors. DL is time delay setup. D is a photon detector.

Fig. 3.
Fig. 3.

(a) Nonlocal and nondestructive Bell-state measurement. The coherent pulse is sent and measured by Bob. To see clearly the operation process, we use line replace circle to denote atomd A and B1, which will be used in following paper. (b) Sketch of quantum information transfer. A, B1, and B2 are three atoms trapped in cavities. H is Hadamard gate operation. The measurement port of AE is possessed by Bob.

Fig. 4.
Fig. 4.

Setup sketch for deterministic CNOT gate. A, B, and T are auxiliary qubit, controlled qubit, and target qubit, respectively. σi, σj are unitary operations. H denotes Hadamard operation. M means single qubit measurement operation. n¯1 and n¯2 are results of AE1 and AE2, respectively. Suppose |ψC=c0|0+c1|1, |ψT=t0|0+t1|1, and |ψA=12(|0+|1) with |c0|2+|c1|2=1 and |t0|2+|t1|2=1.

Fig. 5.
Fig. 5.

Setup sketch for four-atom |χ state generation. σi is dependent on the result of the AEi, σi=I for n¯i0 and σi=σx for n¯i=0. U is the unitary operation (|0|0|12; |1|0+|12).

Fig. 6.
Fig. 6.

Setup sketch for N-atom state generation. For the case of cluster-state generation, σi is dependent on the result of the AEi, σi=I for n¯i0 and σi=σx for n¯i=0. H is Hadamard operation. For the case of GHZ-state generation, unitary operations σi and H are not needed.

Fig. 7.
Fig. 7.

(a) Success probability of the AE as function of α and γ/g with ξ=0.8 and η=13. (b) Success probability of the AE as function of α and ξ with γ/g=0.05 and η=13. (c) Fidelity of the AE as function of α and κ/g with η=13 when n¯=0. (d) Fidelity of the AE as function of α and κ/g with η=13 when n¯0.

Tables (2)

Tables Icon

Table 1. Results of AE1 and AE2 and Corresponding Operations to Finish the Quantum Information Transfer

Tables Icon

Table 2. Results of AE, Output States, and Corresponding Operations to Achieve CNOT Gatea

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

H=(ω0ωp)|ee|+(ωcωp)aa+g(aσ++aσ)
a˙=(iδ2+κ2)aigσκain,
σ˙=(iδ1+γ2)σ+igσza+γσzbin,
aout=ain+κa,
aout=r1ain,r1=(iδ2κ2)(iδ1+γ2)+g2(iδ2+κ2)(iδ1+γ2)+g2(atom in state|1),
aout=r0ain,r0=iδ2κ2iδ2+κ2(atom in state|0).
|ζ1=|0+|12eαainα*ain|0in.
|ζ2=12(|0|αeiθ0out+|1|αeiθ1out),
|ψ0=12(|0+|1)a(|0+|1)b|2α0,
|ψ1=12[(|01ab+|10ab)|α1+|00ab|αeiπ1+|11ab|αeiπ1]|α2BS212[(|01ab+|10ab)|03|2α4+(|00ab+|11ab)|2α3|04]
|ψ2={12(|00ab+|11ab),forn¯012(|01ab+|10ab),forn¯=0;
|Φ±AB=12(|00ab±|11ab),|Ψ±AB=12(|01ab±|10ab).
|ΨABn¯1=0,n¯2=0;|Ψ+ABn¯1=0,n¯20;|ΦABn¯10,n¯2=0;|Φ+ABn¯10,n¯20.
|φA=α|0A+β|1A
|φA|Ψ+B1B2=12[|Ψ+AB1(α|0B2+β|1B2)+|ΨAB1(α|0B2β|1B2)+|Φ+AB1(β|0B2+α|1B2)+|ΦAB1(β|0B2α|1B2)].
|Ψ=(c0|0C+c1|1C)12(|0A+|1A)(t0|0T+t1|1T),
|Ψ1=12(c0|00CA+c1|11CA)(t0|0T+t1|1T).
|Ψ2=(c0t0+c0t1)|000CAT+(c0t0c0t1)|011CAT+(c1t0+c1t1)|100CAT(c1t0c1t1)|111CAT.
|Ψ3=c0t0|0C(|00AT+|11AT)+c0t1|0C(|01AT+|10AT)+c1t0|1C(|01AT+|10AT)+c1t1|1C(|00AT+|11AT).
|Ψ4=c0t0|00CT+c0t1|01CT+c1t0|11CT+c1t1|10CT.
|χ=12[(|01|02+|11|12)|03|04+(|01|12+|11|02)|13|14]
|ϕ0=i=1412(|0+|1)i.
|ϕ1=12(|01|02+|11|12)12(|03+|13)12(|04+|14),
|ϕ2=122(|01|02|03+|11|12|13)12(|04+|14).
|clusterN=12Ni=1N(|0i+|1iσzi+1),
|ψ12=12(|01|02+|11|12).
|ψ12=12(|01|02+|01|12+|11|02|11|12).
|ψ1234=14(|0000+|0001+|0010|0011+|0100+|0101|0110+|0111+|1000+|1001+|1010|1011|1100|1101+|1110|1111),
|ψ1234=14(|01+|11σz2)(|02+|12σz3)(|03+|13σz4)(|04+|14).
|GHZ=12(|01|0j|1j+1|1N+|11|1j|0j+1|0N).

Metrics