Abstract

We inscribed relief diffraction gratings with periods of 6, 14, and 24 μm into the surface of Ge15Ga3Sb12S70 bulk glass by the material’s ablation using a femtosecond λ=800nm Ti:sapphire pulsed laser. The laser writing was done with sample implemented on a computer-controlled stage employing surface-to-beam alignment, laser power, and raster pattern control. Pulse energies of 1.5, 3.0, and 4.5 μJ were focused on spot diameter of 1.5 μm, resulting in channel widths, measured on the surface, of around 4, 5, and 6 μm and depths up to 1.7 μm. The first-order diffraction efficiency of the fabricated gratings was up to 10% at λ=650nm. We have also fabricated a “composite” grating combining the three relief diffraction gratings inscribed in the same position, but with a mutual tilt. The composite grating provides complex multidirectional diffraction of the light in accordance with geometrical arrangement and grating period of all the gratings inscribed. We propose practical applications of femtosecond pulsed-laser surface patterning, for example, surface-relief diffraction microgratings integrated at the ends of multimode mid-IR chalcogenide optical waveguides or on the surfaces of bare core chalcogenide glass optical fibers used for chemical sensing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
    [CrossRef]
  2. F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445–516.
  3. R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009).
    [CrossRef]
  4. D. Ouzounov and F. Freund, “Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data,” Adv. Space Res. 33, 268–273 (2004).
    [CrossRef]
  5. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009).
    [CrossRef]
  6. Y. Utsugi and S. Zembutsu, “Relief type diffraction grating by amorphous chalcogenide films,” Appl. Phys. Lett. 27, 508–509 (1975).
    [CrossRef]
  7. S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
    [CrossRef]
  8. R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
    [CrossRef]
  9. J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003).
    [CrossRef]
  10. L. Su, C. J. Rowlands, and S. R. Elliott, “Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates,” Opt. Lett. 34, 1645–1647 (2009).
    [CrossRef]
  11. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34, 1234–1236 (2009).
    [CrossRef]
  12. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010).
    [CrossRef]
  13. J. Orava, T. Kohoutek, A. L. Greer, and H. Fudouzi, “Soft imprint lithography of a bulk chalcogenide glass,” Opt. Mater. Express 1, 796–802 (2011).
    [CrossRef]
  14. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011).
    [CrossRef]
  15. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
    [CrossRef]
  16. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
    [CrossRef]
  17. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
    [CrossRef]
  18. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
    [CrossRef]
  19. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012).
    [CrossRef]
  20. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  21. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J.-P. Ruske, B. Chichkov, and A. Tuennermann, “Sub-diffraction limited structuring of solid targets with femtosecond laser pulses,” Opt. Express 7, 41–49 (2000).
    [CrossRef]
  22. S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, “Nanostructuring with spatially localized femtosecond laser pulses,” Opt. Lett. 24, 914–916 (1999).
    [CrossRef]
  23. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
    [CrossRef]
  24. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef]
  25. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [CrossRef]
  26. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
    [CrossRef]
  27. T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
    [CrossRef]
  28. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
    [CrossRef]
  29. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
    [CrossRef]
  30. http://www.elionix.co.jp .
  31. R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, 2007).
  32. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002).
    [CrossRef]
  33. E. G. Gamaly, A. V. Rode, and B. L. Davies, “Ultrafast laser ablation and film deposition,” in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, R. Eason, ed. (Wiley, 2006).

2012

2011

E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011).
[CrossRef]

J. Orava, T. Kohoutek, A. L. Greer, and H. Fudouzi, “Soft imprint lithography of a bulk chalcogenide glass,” Opt. Mater. Express 1, 796–802 (2011).
[CrossRef]

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

2010

2009

2008

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

2007

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

2006

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef]

2005

2004

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
[CrossRef]

D. Ouzounov and F. Freund, “Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data,” Adv. Space Res. 33, 268–273 (2004).
[CrossRef]

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

2003

J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003).
[CrossRef]

2002

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

2001

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

2000

1999

1998

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

1997

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

1995

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

1975

Y. Utsugi and S. Zembutsu, “Relief type diffraction grating by amorphous chalcogenide films,” Appl. Phys. Lett. 27, 508–509 (1975).
[CrossRef]

Adam, J.-L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Adams, S.

Aggarwal, I.

Arai, A. Y.

Arezki, B.

Arnold, C. B.

Baro, A. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

Benson, T. M.

Bovatsek, J.

Brilland, L.

Brodersen, P.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

Bryce, R. M.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Busse, L.

Canat, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Chartier, T.

Chichkov, B.

Chichkov, B. N.

Chrissanthopoulos, A.

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

Clifford, J.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009).
[CrossRef]

Colchero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

Davies, B. L.

E. G. Gamaly, A. V. Rode, and B. L. Davies, “Ultrafast laser ablation and film deposition,” in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, R. Eason, ed. (Wiley, 2006).

DeCorby, R. G.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Dooly, G.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009).
[CrossRef]

Doualan, J.-L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

Dwivedi, P. K.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Eason, R.

R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, 2007).

Eaton, S. M.

Egbert, A.

Elliott, S. R.

L. Su, C. J. Rowlands, and S. R. Elliott, “Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates,” Opt. Lett. 34, 1645–1647 (2009).
[CrossRef]

J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003).
[CrossRef]

Fallnich, C.

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Fenske, D.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

Fernandez, R.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

Florea, C.

Freund, F.

D. Ouzounov and F. Freund, “Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data,” Adv. Space Res. 33, 268–273 (2004).
[CrossRef]

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445–516.

Fudouzi, H.

Furniss, D.

Gadret, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. L. Davies, “Ultrafast laser ablation and film deposition,” in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, R. Eason, ed. (Wiley, 2006).

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

Gomez-Herrero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

Gomez-Rodriguez, J. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

Gonzalez-Leal, J. M.

J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003).
[CrossRef]

Greer, A. L.

Haugen, C. J.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Herman, P. R.

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

Ho, N.

Horcas, I.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

Houizot, P.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

Jha, A.

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Jose, G.

Kar, A.

Kasap, S. O.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Kern, P.

Kohoutek, T.

Korte, F.

Krecmer, P.

J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003).
[CrossRef]

Labadie, L.

Lewis, E.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009).
[CrossRef]

Lian, Z. G.

Lieberman, K.

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Lopez, C.

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Martin, G.

McMullin, J. N.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Miklos, F.

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

Moizan, V.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Moncorge, R.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Monteville, A.

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

Muda, R.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009).
[CrossRef]

Nakeeran, P.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Nazabal, V.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Nguyen, H. T.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Nguyen, T.

Nolte, S.

O’Keeffe, S.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009).
[CrossRef]

Ohishi, Y.

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

Orava, J.

Ostendorf, A.

Ouzounov, D.

D. Ouzounov and F. Freund, “Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data,” Adv. Space Res. 33, 268–273 (2004).
[CrossRef]

Ozin, G. A.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Pan, W.

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Pitois, S.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Prokop, J.

J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003).
[CrossRef]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

Psaila, N.

Renversez, G.

Richardson, K.

Richardson, M.

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445–516.

Rivero, C.

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. L. Davies, “Ultrafast laser ablation and film deposition,” in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, R. Eason, ed. (Wiley, 2006).

Ródenas, A.

Rowlands, C. J.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

Ruske, J.-P.

Sanchez, E. A.

Sanghera, J.

Schulte, A.

Seddon, A. B.

Shah, L.

Shani, Y.

Shaw, B.

Shiosaka, T. W.

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Smektala, F.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Su, L.

Suzuki, T.

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

Terkel, H.

Thiel, M.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

Thomson, R.

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Tittel, F. K.

F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445–516.

Traynor, N.

Troles, J.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef]

Tuennermann, A.

Utsugi, Y.

Y. Utsugi and S. Zembutsu, “Relief type diffraction grating by amorphous chalcogenide films,” Appl. Phys. Lett. 27, 508–509 (1975).
[CrossRef]

Vallee, R.

von Freymann, G.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Wagner, T.

Waldmann, M.

Wallner, O.

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

Wegener, M.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Welling, H.

Will, M.

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Wong, S. H.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

Yan, X.

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Yannopoulos, S. N.

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

Yoshino, F.

Zembutsu, S.

Y. Utsugi and S. Zembutsu, “Relief type diffraction grating by amorphous chalcogenide films,” Appl. Phys. Lett. 27, 508–509 (1975).
[CrossRef]

Zhang, H.

Zoubir, A.

Adv. Mater.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Adv. Space Res.

D. Ouzounov and F. Freund, “Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data,” Adv. Space Res. 33, 268–273 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Utsugi and S. Zembutsu, “Relief type diffraction grating by amorphous chalcogenide films,” Appl. Phys. Lett. 27, 508–509 (1975).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Chem. Mater.

S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007).
[CrossRef]

IEEE J. Quantum Electron.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

J. Non-Cryst. Solids

J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

J. Opt. Am. Soc. B

T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011).
[CrossRef]

J. Phys.: Conf. Ser.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009).
[CrossRef]

J. Vac Sci. Technol. A

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004).
[CrossRef]

Opt. Commun.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. (Amsterdam)

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008).
[CrossRef]

Opt. Mater. Express

Phil. Trans. R. Soc. A

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001).
[CrossRef]

Phys. Plasmas

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Phys. Rev. Lett.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Rev. Sci. Instrum.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[CrossRef]

Other

http://www.elionix.co.jp .

R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, 2007).

F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445–516.

E. G. Gamaly, A. V. Rode, and B. L. Davies, “Ultrafast laser ablation and film deposition,” in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, R. Eason, ed. (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of femtosecond laser writing setup showing preparation of relief diffraction gratings onto a chalcogenide glass disc. An inset image shows the gratings orientation on the chalcogenide glass surface.

Fig. 2.
Fig. 2.

Optical microscope images (transmittance mode) show the relief diffraction gratings inscribed into the surface of chalcogenide Ge-Ga-Sb-S glass with the period of (a) d=24μm, (b) d=14μm, (c) d=6μm, and (d) the composite grating.

Fig. 3.
Fig. 3.

Atomic force microscopy images of the diffraction gratings for (a) d=24μm, (b) d=14μm, (c) d=6μm, and (d) the composite grating.

Fig. 4.
Fig. 4.

3D SEM surface analysis allowed the estimation of channel widths and depths of the relief diffraction gratings inscribed. The grating periods were (a) d=24μm, (b) d=14μm, (c) d=6μm, and (d) the composite grating.

Fig. 5.
Fig. 5.

Estimation of channel widths (W) and depths (D) was done as follows: W=21, D=(1+2)/(23) and the FWHM (FWHM=ba at D/2). Surface profiles were obtained by 3D SEM analysis. The grating periods were (a) d=24μm, (b) d=14μm, and (c) d=6μm. The results are summarized in Table 1.

Fig. 6.
Fig. 6.

Diffraction patterns recorded in transmittance mode from single and composite gratings. The distance from the gratings to a screen was l=20cm, the incidence angle Θι=0°, and the wavelength of a laser diode was λ=650nm. The composite grating consists of the gratings with d=6, 14 μm inscribed with a tilt of 52 and 118° against that of d=24μm.

Fig. 7.
Fig. 7.

Schematic showing experimental setup used for recording the diffraction efficiency. The grating-power meter distance was l=30cm to increase separation between the diffraction maxima. The lines show different order of diffraction maxima.

Fig. 8.
Fig. 8.

Calculated diffraction pattern for λ=650nm laser light transmitted throughout the grating d=6μm. The incident angle of the beam was Θι=0° and the screen-grating distance l=20cm. Red spots on screen correspond to measured positions of the diffracted light from single grating.

Fig. 9.
Fig. 9.

A drawing of the intended diffraction grating with d=14μm onto an optical waveguide inscribed into Ge-Ga-Sb-S glass by using λ=800nm femtosecond laser. Direct laser writing is supposed for straight, contactless, mask-free, and etching-free fabrication of microgratings integrated at the end of multimode waveguides.

Tables (3)

Tables Icon

Table 1. Calculated and Measured Positions of Diffracted (Transmitted) Light Spots From the Composite Diffraction Grating Under Illumination of λ=650, 974, 1215, and 1440 nm Laser Diodesa

Tables Icon

Table 2. Evaluation of the Channel Width, Depth, and the FWHM for Laser-Inscribed Single Diffraction Gratingsa

Tables Icon

Table 3. Measured Transmitted Power of λ=650nm Light at the Distance of l=30cm from Diffraction Gratingsa

Metrics