Abstract

The polarization characteristics of nonlinear refraction and nonlinear scattering in several solvents (toluene, o-dichlorobenzene, N, N-dimethylformamide) are studied using the polarized light Z-scan technique with femtosecond laser pulses. For nonlinear refraction, the physical mechanism of the polarization characteristics is that the nonlinear polarization component related to Re(χxyyx(3)) could be adjusted by polarization state of incident light in isotropic media. For nonlinear scattering, the polarization characteristic is related to the self-focusing effect, which depends on the nonlinear refractive index and polarization state of incident light. In addition, the values of nonlinear refractive indices and third-order nonlinear susceptibility components are determined for these solvents at the femtosecond time scale. Both nonresonant electronic nonlinearity and fast noninstantaneous nuclear nonlinearity contribute to these values at the pulse width used in the measurements. Also, these nonlinear refractive indices and third-order nonlinear susceptibility components could be used in calculating nonlinear optical parameters of those novel materials that need to be dissolved in these solvents in nonlinear optical measurements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics, Wiley-VCH (2000).
  2. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [CrossRef]
  3. D. C. Hutchings, J. S. Aitchison, B. S. Wherrett, G. T. Kennedy, and W. Sibbett, “Polarization dependence of ultrafast nonlinear refraction in an AlGaAs waveguide at the half-band gap,” Opt. Lett. 20, 991–993 (1995).
    [CrossRef]
  4. P. R. Monson and W. M. McClain, “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53, 29–37 (1970).
    [CrossRef]
  5. M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B 28, 3677–3696 (1983).
    [CrossRef]
  6. J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
    [CrossRef]
  7. M. Oskar van Deventer and Andre J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12585–590(1994).
    [CrossRef]
  8. S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991).
    [CrossRef]
  9. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  10. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 1996).
  11. X. Q. Yan, Z. B. Liu, X. L. Zhang, W. Y. Zhou, and J. G. Tian, “Polarization dependence of Z-scan measurement: theory and experiment,” Opt. Express 17, 6397–6406 (2009).
    [CrossRef]
  12. X. Q. Yan, Z. B. Liu, X. L. Zhang, W. P. Zang, and J. G. Tian, “Modified elliptically polarized light Z-scan method for studying third-order nonlinear susceptibility components,” Opt. Express 18, 10270–10281 (2010).
    [CrossRef]
  13. X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, and J. G. Tian, “Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale,” Opt. Express 19, 5559–5564 (2011).
    [CrossRef]
  14. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609–636 (1968).
    [CrossRef]
  15. R. W. Boyd, S. G. Lukishova, and Y.-R. Shen, Self-Focusing: Past and Present. Fundamentals and Prospects (Springer, 2009).
  16. http://en.wikipedia.org/wiki/Self-focusing .
  17. D. Auric and A. Labadens, “On the use of a circularly polarized beam to reduce the self focusing effect in a glass rod amplifier,” Opt. Commun. 21, 241–242 (1977).
    [CrossRef]
  18. G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E 67, 036622 (2003).
    [CrossRef]
  19. L. A. Patel, “Effect of self-focusing on scattering of a laser beam in a collisional plasma,” J. Phys. D 11, 347–354 (1978).
    [CrossRef]
  20. B. L. Justus, A. J. Campillo, and A. L. Huston, “Thermal-defocusing/scattering optical limiter,” Opt. Lett. 19, 673–675 (1994).
    [CrossRef]
  21. H. Yu and S. Meng, “Transient stimulated Brillouin scattering and damage of optical glass,” J. Appl. Phys. 81, 85–88 (1997).
    [CrossRef]
  22. A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
    [CrossRef]
  23. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
    [CrossRef]
  24. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [CrossRef]
  25. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
    [CrossRef]
  26. T. S. Luk, S. Xiong, W. W. Chow, X. Miao, G. Subramania, P. J. Resnick, A. J. Fischer, and J. C. Brinker, “Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity,” J. Opt. Soc. Am. B 28, 1365–1373 (2011).
    [CrossRef]
  27. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
    [CrossRef]
  28. D. Neher, G. I. Stegeman, F. A. Tinker, and N. Peyghambarian, “Nonlinear optical response of C60 and C70,” Opt. Lett. 17, 1491–1493 (1992).
    [CrossRef]
  29. Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
    [CrossRef]
  30. X. L. Zhang, X. Zhao, Z. B. Liu, Y. S. Liu, Y. S. Chen, and J. G. Tian, “Enhanced nonlinear optical properties of graphene-oligothiophene hybrid material,” Opt. Express 17, 23959–23964 (2009).
    [CrossRef]
  31. N. Venkatram, D. Narayana Rao, and M. A. Akundi, “Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13, 867–872 (2005).
    [CrossRef]
  32. M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  33. K. Y. Tseng, K. S. Wong, and G. K. L. Wong, “Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe,” Opt. Lett. 21, 180–182 (1996).
    [CrossRef]
  34. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739 (1994).
    [CrossRef]
  35. X. Q. Yan, Z. B. Liu, S. Shi, W. Y. Zhou, and J. G. Tian, “Analysis on the origin of the ultrafast optical nonlinearity of carbon disulfide around 800 nm,” Opt. Express 18, 26169–26174 (2010).
    [CrossRef]
  36. B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008).
    [CrossRef]
  37. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
    [CrossRef]
  38. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
    [CrossRef]
  39. Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).
    [CrossRef]
  40. D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
    [CrossRef]
  41. R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
    [CrossRef]
  42. D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98, 9279–9283 (1993).
    [CrossRef]
  43. D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

2011 (2)

2010 (3)

2009 (3)

2008 (1)

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008).
[CrossRef]

2006 (1)

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[CrossRef]

2005 (1)

2003 (2)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E 67, 036622 (2003).
[CrossRef]

2002 (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

1999 (1)

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

1997 (3)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

H. Yu and S. Meng, “Transient stimulated Brillouin scattering and damage of optical glass,” J. Appl. Phys. 81, 85–88 (1997).
[CrossRef]

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).
[CrossRef]

1996 (3)

1995 (1)

1994 (3)

B. L. Justus, A. J. Campillo, and A. L. Huston, “Thermal-defocusing/scattering optical limiter,” Opt. Lett. 19, 673–675 (1994).
[CrossRef]

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739 (1994).
[CrossRef]

M. Oskar van Deventer and Andre J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12585–590(1994).
[CrossRef]

1993 (1)

D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98, 9279–9283 (1993).
[CrossRef]

1992 (1)

1991 (1)

S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991).
[CrossRef]

1990 (1)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1987 (1)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

1986 (1)

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

1983 (1)

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B 28, 3677–3696 (1983).
[CrossRef]

1978 (1)

L. A. Patel, “Effect of self-focusing on scattering of a laser beam in a collisional plasma,” J. Phys. D 11, 347–354 (1978).
[CrossRef]

1977 (1)

D. Auric and A. Labadens, “On the use of a circularly polarized beam to reduce the self focusing effect in a glass rod amplifier,” Opt. Commun. 21, 241–242 (1977).
[CrossRef]

1970 (1)

P. R. Monson and W. M. McClain, “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53, 29–37 (1970).
[CrossRef]

1968 (1)

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609–636 (1968).
[CrossRef]

Aitchison, J. S.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

D. C. Hutchings, J. S. Aitchison, B. S. Wherrett, G. T. Kennedy, and W. Sibbett, “Polarization dependence of ultrafast nonlinear refraction in an AlGaAs waveguide at the half-band gap,” Opt. Lett. 20, 991–993 (1995).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609–636 (1968).
[CrossRef]

Akundi, M. A.

Auric, D.

D. Auric and A. Labadens, “On the use of a circularly polarized beam to reduce the self focusing effect in a glass rod amplifier,” Opt. Commun. 21, 241–242 (1977).
[CrossRef]

Backus, S.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Bivas, A.

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B 28, 3677–3696 (1983).
[CrossRef]

Boot, Andre J.

M. Oskar van Deventer and Andre J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12585–590(1994).
[CrossRef]

Boyd, R. W.

R. W. Boyd, S. G. Lukishova, and Y.-R. Shen, Self-Focusing: Past and Present. Fundamentals and Prospects (Springer, 2009).

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

Bradley, A. L.

J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
[CrossRef]

Brinker, J. C.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Campillo, A. J.

Chaux, R.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Chen, Y.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Chen, Y. S.

Chow, W. W.

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Couris, S.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Donegan, J. F.

J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
[CrossRef]

Downer, M. C.

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B 28, 3677–3696 (1983).
[CrossRef]

Dutt, N. V. K.

D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

Faucher, O.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Fibich, G.

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E 67, 036622 (2003).
[CrossRef]

Fischer, A. J.

Flood, E.

J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
[CrossRef]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[CrossRef]

Ghosh, T. K.

D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

Gu, B.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008).
[CrossRef]

Guo, W. H.

J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
[CrossRef]

Hagan, D. J.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

He, J.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Holtmann, L.

S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991).
[CrossRef]

Huston, A. L.

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

D. C. Hutchings, J. S. Aitchison, B. S. Wherrett, G. T. Kennedy, and W. Sibbett, “Polarization dependence of ultrafast nonlinear refraction in an AlGaAs waveguide at the half-band gap,” Opt. Lett. 20, 991–993 (1995).
[CrossRef]

Ilan, B.

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E 67, 036622 (2003).
[CrossRef]

Ji, W.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008).
[CrossRef]

Justus, B. L.

Kalpouzos, C.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Kapteyn, H.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Kennedy, G. T.

Kenney-Wallace, G. A.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Khokhlov, R. V.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609–636 (1968).
[CrossRef]

Koudoumas, E.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Kraitzig, E.

S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991).
[CrossRef]

Krauss, T. D.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739 (1994).
[CrossRef]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[CrossRef]

Labadens, A.

D. Auric and A. Labadens, “On the use of a circularly polarized beam to reduce the self focusing effect in a glass rod amplifier,” Opt. Commun. 21, 241–242 (1977).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Lavorel, B.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Liu, Y.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Liu, Y. S.

Liu, Z.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Liu, Z. B.

Lotshaw, W. T.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Luk, T. S.

Lukishova, S. G.

R. W. Boyd, S. G. Lukishova, and Y.-R. Shen, Self-Focusing: Past and Present. Fundamentals and Prospects (Springer, 2009).

Lynch, M.

J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
[CrossRef]

Manenkov, A. A.

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

McClain, W. M.

P. R. Monson and W. M. McClain, “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53, 29–37 (1970).
[CrossRef]

McMorrow, D.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Meng, S.

H. Yu and S. Meng, “Transient stimulated Brillouin scattering and damage of optical glass,” J. Appl. Phys. 81, 85–88 (1997).
[CrossRef]

Miao, X.

Michaut, X.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Monson, P. R.

P. R. Monson and W. M. McClain, “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53, 29–37 (1970).
[CrossRef]

Morita, R.

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).
[CrossRef]

Mourou, G.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Murnane, M.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Narayana Rao, D.

Neher, D.

O’Dowd, J.

J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
[CrossRef]

Odoulov, S.

S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991).
[CrossRef]

Patel, L. A.

L. A. Patel, “Effect of self-focusing on scattering of a laser beam in a collisional plasma,” J. Phys. D 11, 347–354 (1978).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Peyghambarian, N.

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Prasad, D. H. L.

D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

Prokhorov, A. M.

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

Rani, K. Y.

D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

Renard, M.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Resnick, P. J.

Rivoire, G.

D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98, 9279–9283 (1993).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Ryasnyanskii, A. I.

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[CrossRef]

Said, A. A.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sato, Y.

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Schüler, H.

Sheikh-Bahae, M.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shen, Y.-R.

R. W. Boyd, S. G. Lukishova, and Y.-R. Shen, Self-Focusing: Past and Present. Fundamentals and Prospects (Springer, 2009).

Shi, S.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sibbett, W.

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

D. Neher, G. I. Stegeman, F. A. Tinker, and N. Peyghambarian, “Nonlinear optical response of C60 and C70,” Opt. Lett. 17, 1491–1493 (1992).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sturman, B.

S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991).
[CrossRef]

Subramania, G.

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Sukhorukov, A. P.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609–636 (1968).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 1996).

Svirko, Yu. P.

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics, Wiley-VCH (2000).

Tian, J.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Tian, J. G.

Tien, A.-C.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Tinker, F. A.

Tseng, K. Y.

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

van Deventer, M. Oskar

M. Oskar van Deventer and Andre J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12585–590(1994).
[CrossRef]

Van Stryland, E. W.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Venkatram, N.

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Viswanath, D. S.

D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

von der Linde, D.

Wan, X.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Wang, D.

D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98, 9279–9283 (1993).
[CrossRef]

Wang, H. T.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008).
[CrossRef]

Wang, T.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Wei, T.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wherrett, B. S.

Wise, F. W.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739 (1994).
[CrossRef]

Wong, G. K. L.

Wong, K. S.

Xiong, S.

Yamashita, M.

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).
[CrossRef]

Yan, X. Q.

Yu, H.

H. Yu and S. Meng, “Transient stimulated Brillouin scattering and damage of optical glass,” J. Appl. Phys. 81, 85–88 (1997).
[CrossRef]

Zang, W. P.

Zhang, X.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Zhang, X. L.

Zhao, X.

Zheludev, N. I.

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics, Wiley-VCH (2000).

Zhou, J.

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Zhou, W. Y.

Appl. Phys. B (1)

S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739 (1994).
[CrossRef]

Carbon (1)

Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[CrossRef]

Electron Lett. (1)

J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

J. Appl. Phys. (2)

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008).
[CrossRef]

H. Yu and S. Meng, “Transient stimulated Brillouin scattering and damage of optical glass,” J. Appl. Phys. 81, 85–88 (1997).
[CrossRef]

J. Chem. Phys. (2)

P. R. Monson and W. M. McClain, “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53, 29–37 (1970).
[CrossRef]

D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98, 9279–9283 (1993).
[CrossRef]

J. Lightwave Technol. (1)

M. Oskar van Deventer and Andre J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12585–590(1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

J. Phys. D (1)

L. A. Patel, “Effect of self-focusing on scattering of a laser beam in a collisional plasma,” J. Phys. D 11, 347–354 (1978).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Opt. Commun. (1)

D. Auric and A. Labadens, “On the use of a circularly polarized beam to reduce the self focusing effect in a glass rod amplifier,” Opt. Commun. 21, 241–242 (1977).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Opt. Spectrosc. (1)

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[CrossRef]

Phys. Rev. B (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B 28, 3677–3696 (1983).
[CrossRef]

Phys. Rev. E (1)

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E 67, 036622 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Sov. Phys. Usp. (2)

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609–636 (1968).
[CrossRef]

Other (6)

R. W. Boyd, S. G. Lukishova, and Y.-R. Shen, Self-Focusing: Past and Present. Fundamentals and Prospects (Springer, 2009).

http://en.wikipedia.org/wiki/Self-focusing .

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 1996).

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics, Wiley-VCH (2000).

D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) OA Z-scan trace of 1 mm ZnSe at 800 nm. (b) CA Z-scan trace of CS2. The solid lines are theoretical fits, and fitting results are listed in the two figures.

Fig. 2.
Fig. 2.

Linearly polarized light CA Z-scan traces of toluene and cell, quartz cell, and toluene with I0=380GW/cm2 and L=1mm.

Fig. 3.
Fig. 3.

(a) Normalized transmittance curve of toluene Ttoluene for different polarized light at I0=321GW/cm2. (b) Dependence of nonlinear refractive index n2 on I0 and polarization state.

Fig. 4.
Fig. 4.

(a) Normalized transmittance curve of ODCB TODCB for different polarization states at I0=247GW/cm2. (b) Dependence of nonlinear refractive index n2 on I0 and polarization state.

Fig. 5.
Fig. 5.

(a) Normalized transmittance curve of DMF TDMF for different polarized light at I0=118GW/cm2. (b) Dependence of nonlinear refractive index n2 on I0 and polarization state.

Fig. 11.
Fig. 11.

OA Z-scan traces of ODCB against scanning direction.

Fig. 6.
Fig. 6.

Comparison of forward transmitted light spectra at different sample position.

Fig. 7.
Fig. 7.

Polarized light OA Z-scan traces of toluene at 757 nJ input energy for L=1mm and 2 mm.

Fig. 8.
Fig. 8.

Calculated maximum intensity at the exit face of sample against position Z for different sample length and polarization state.

Fig. 9.
Fig. 9.

Polarized light OA Z-scan traces of ODCB at 660 nJ input energy for L=1mm and 2 mm (the position of arrow marked by “Move sample” is where we laterally moved the sample at the plane perpendicular to the light axis).

Fig. 10.
Fig. 10.

Polarized light OA Z-scan traces of 2 mm thick DMF at 860 nJ input energy.

Tables (3)

Tables Icon

Table 1. Nonlinear Refractive Indices n2 for Toluene, ODCB, and DMF with Different Polarized Light

Tables Icon

Table 2. Values of Third-Order Nonlinear Susceptibility Components for Toluene, ODCB, and DMF

Tables Icon

Table 3. Viscosity of Toluene, ODCB, and DMF at T=25°C

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E⃗=E+x^+iy^2+Ex^iy^2,
1rr(rEa,±(r,z,t)r)2iκEa,±(r,z,t)zκ2Ea,±(r,z,t)+±effκ02Ea,±(r,z,t)=0,

Metrics